![]() |
Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > abnotbtaxb | Structured version Visualization version Unicode version |
Description: Assuming a, not b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016.) |
Ref | Expression |
---|---|
abnotbtaxb.1 |
![]() ![]() |
abnotbtaxb.2 |
![]() ![]() ![]() |
Ref | Expression |
---|---|
abnotbtaxb |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abnotbtaxb.1 |
. . 3
![]() ![]() | |
2 | abnotbtaxb.2 |
. . 3
![]() ![]() ![]() | |
3 | xor3 372 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | pm5.1 902 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | ibibr 358 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | mpbi 220 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 1, 2, 6 | mp2an 708 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 3, 7 | bitri 264 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 1, 2, 8 | mpbir2an 955 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | df-xor 1465 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 9, 10 | mpbir 221 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-xor 1465 |
This theorem is referenced by: aistbisfiaxb 41086 aifftbifffaibifff 41089 |
Copyright terms: Public domain | W3C validator |