| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > abnotbtaxb | Structured version Visualization version Unicode version | ||
| Description: Assuming a, not b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016.) |
| Ref | Expression |
|---|---|
| abnotbtaxb.1 |
|
| abnotbtaxb.2 |
|
| Ref | Expression |
|---|---|
| abnotbtaxb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abnotbtaxb.1 |
. . 3
| |
| 2 | abnotbtaxb.2 |
. . 3
| |
| 3 | xor3 372 |
. . . 4
| |
| 4 | pm5.1 902 |
. . . . . 6
| |
| 5 | ibibr 358 |
. . . . . 6
| |
| 6 | 4, 5 | mpbi 220 |
. . . . 5
|
| 7 | 1, 2, 6 | mp2an 708 |
. . . 4
|
| 8 | 3, 7 | bitri 264 |
. . 3
|
| 9 | 1, 2, 8 | mpbir2an 955 |
. 2
|
| 10 | df-xor 1465 |
. 2
| |
| 11 | 9, 10 | mpbir 221 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-xor 1465 |
| This theorem is referenced by: aistbisfiaxb 41086 aifftbifffaibifff 41089 |
| Copyright terms: Public domain | W3C validator |