| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aisfina | Structured version Visualization version Unicode version | ||
| Description: Given a is equivalent to
|
| Ref | Expression |
|---|---|
| aisfina.1 |
|
| Ref | Expression |
|---|---|
| aisfina |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aisfina.1 |
. 2
| |
| 2 | nbfal 1495 |
. 2
| |
| 3 | 1, 2 | mpbir 221 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-tru 1486 df-fal 1489 |
| This theorem is referenced by: aistbisfiaxb 41086 aisfbistiaxb 41087 aifftbifffaibif 41088 aifftbifffaibifff 41089 atnaiana 41090 dandysum2p2e4 41165 |
| Copyright terms: Public domain | W3C validator |