| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > alrimii | Structured version Visualization version Unicode version | ||
| Description: A lemma for introducing a universal quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
| Ref | Expression |
|---|---|
| alrimii.1 |
|
| alrimii.2 |
|
| alrimii.3 |
|
| alrimii.4 |
|
| Ref | Expression |
|---|---|
| alrimii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimii.1 |
. . 3
| |
| 2 | alrimii.2 |
. . . 4
| |
| 3 | alrimii.3 |
. . . 4
| |
| 4 | 2, 3 | sylibr 224 |
. . 3
|
| 5 | 1, 4 | alrimi 2082 |
. 2
|
| 6 | nfsbc1v 3455 |
. . 3
| |
| 7 | alrimii.4 |
. . 3
| |
| 8 | sbceq2a 3447 |
. . 3
| |
| 9 | 6, 7, 8 | cbval 2271 |
. 2
|
| 10 | 5, 9 | sylib 208 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-sbc 3436 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |