MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbval Structured version   Visualization version   Unicode version

Theorem cbval 2271
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 13-May-1993.) (Revised by Mario Carneiro, 3-Oct-2016.)
Hypotheses
Ref Expression
cbval.1  |-  F/ y
ph
cbval.2  |-  F/ x ps
cbval.3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbval  |-  ( A. x ph  <->  A. y ps )

Proof of Theorem cbval
StepHypRef Expression
1 cbval.1 . . 3  |-  F/ y
ph
2 cbval.2 . . 3  |-  F/ x ps
3 cbval.3 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
43biimpd 219 . . 3  |-  ( x  =  y  ->  ( ph  ->  ps ) )
51, 2, 4cbv3 2265 . 2  |-  ( A. x ph  ->  A. y ps )
63biimprd 238 . . . 4  |-  ( x  =  y  ->  ( ps  ->  ph ) )
76equcoms 1947 . . 3  |-  ( y  =  x  ->  ( ps  ->  ph ) )
82, 1, 7cbv3 2265 . 2  |-  ( A. y ps  ->  A. x ph )
95, 8impbii 199 1  |-  ( A. x ph  <->  A. y ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481   F/wnf 1708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-nf 1710
This theorem is referenced by:  cbvex  2272  cbvalvOLD  2274  cbval2  2279  sb8  2424  sb8eu  2503  cbvralf  3165  ralab2  3371  cbvralcsf  3565  dfss2f  3594  elintab  4487  reusv2lem4  4872  cbviota  5856  sb8iota  5858  dffun6f  5902  findcard2  8200  aceq1  8940  bnj1385  30903  sbcalf  33917  alrimii  33924  aomclem6  37629  rababg  37879
  Copyright terms: Public domain W3C validator