| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an33rean | Structured version Visualization version Unicode version | ||
| Description: Rearrange a 9-fold conjunction. (Contributed by Thierry Arnoux, 14-Apr-2019.) |
| Ref | Expression |
|---|---|
| an33rean |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anass 1042 |
. . 3
| |
| 2 | 3anan12 1051 |
. . 3
| |
| 3 | 3anrev 1049 |
. . . 4
| |
| 4 | 3anass 1042 |
. . . 4
| |
| 5 | 3, 4 | bitri 264 |
. . 3
|
| 6 | 1, 2, 5 | 3anbi123i 1251 |
. 2
|
| 7 | 3an6 1409 |
. 2
| |
| 8 | an4 865 |
. . . . . 6
| |
| 9 | 8 | anbi2i 730 |
. . . . 5
|
| 10 | 3anass 1042 |
. . . . 5
| |
| 11 | 3anass 1042 |
. . . . 5
| |
| 12 | 9, 10, 11 | 3bitr4i 292 |
. . . 4
|
| 13 | an4 865 |
. . . . . 6
| |
| 14 | 13 | anbi1i 731 |
. . . . 5
|
| 15 | df-3an 1039 |
. . . . 5
| |
| 16 | df-3an 1039 |
. . . . 5
| |
| 17 | 14, 15, 16 | 3bitr4i 292 |
. . . 4
|
| 18 | 3ancomb 1047 |
. . . . . 6
| |
| 19 | 18 | anbi1i 731 |
. . . . 5
|
| 20 | 3an6 1409 |
. . . . 5
| |
| 21 | 3an6 1409 |
. . . . 5
| |
| 22 | 19, 20, 21 | 3bitr4i 292 |
. . . 4
|
| 23 | 12, 17, 22 | 3bitri 286 |
. . 3
|
| 24 | 23 | anbi2i 730 |
. 2
|
| 25 | 6, 7, 24 | 3bitri 286 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
| This theorem is referenced by: trgcgrg 25410 |
| Copyright terms: Public domain | W3C validator |