![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ax-hgprmladder | Structured version Visualization version Unicode version |
Description: There is a partition ("ladder") of primes from 7 to 8.8 x 10^30 with parts ("rungs") having lengths of at least 4 and at most N - 4, see section 1.2.2 in [Helfgott] p. 4. Temporarily provided as "axiom". (Contributed by AV, 3-Aug-2020.) (Revised by AV, 9-Sep-2021.) |
Ref | Expression |
---|---|
ax-hgprmladder |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cc0 9936 |
. . . . . . 7
![]() ![]() | |
2 | vf |
. . . . . . . 8
![]() ![]() | |
3 | 2 | cv 1482 |
. . . . . . 7
![]() ![]() |
4 | 1, 3 | cfv 5888 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() |
5 | c7 11075 |
. . . . . 6
![]() ![]() | |
6 | 4, 5 | wceq 1483 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | c1 9937 |
. . . . . . 7
![]() ![]() | |
8 | 7, 3 | cfv 5888 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() |
9 | c3 11071 |
. . . . . . 7
![]() ![]() | |
10 | 7, 9 | cdc 11493 |
. . . . . 6
![]() ![]() ![]() |
11 | 8, 10 | wceq 1483 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | vd |
. . . . . . . 8
![]() ![]() | |
13 | 12 | cv 1482 |
. . . . . . 7
![]() ![]() |
14 | 13, 3 | cfv 5888 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() |
15 | c8 11076 |
. . . . . . . 8
![]() ![]() | |
16 | c9 11077 |
. . . . . . . 8
![]() ![]() | |
17 | 15, 16 | cdc 11493 |
. . . . . . 7
![]() ![]() ![]() |
18 | 7, 1 | cdc 11493 |
. . . . . . . 8
![]() ![]() ![]() |
19 | c2 11070 |
. . . . . . . . 9
![]() ![]() | |
20 | 19, 16 | cdc 11493 |
. . . . . . . 8
![]() ![]() ![]() |
21 | cexp 12860 |
. . . . . . . 8
![]() ![]() | |
22 | 18, 20, 21 | co 6650 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | cmul 9941 |
. . . . . . 7
![]() ![]() | |
24 | 17, 22, 23 | co 6650 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 14, 24 | wceq 1483 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | 6, 11, 25 | w3a 1037 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
27 | vi |
. . . . . . . . 9
![]() ![]() | |
28 | 27 | cv 1482 |
. . . . . . . 8
![]() ![]() |
29 | 28, 3 | cfv 5888 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() |
30 | cprime 15385 |
. . . . . . . 8
![]() ![]() | |
31 | 19 | csn 4177 |
. . . . . . . 8
![]() ![]() ![]() ![]() |
32 | 30, 31 | cdif 3571 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
33 | 29, 32 | wcel 1990 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
34 | caddc 9939 |
. . . . . . . . . 10
![]() ![]() | |
35 | 28, 7, 34 | co 6650 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() |
36 | 35, 3 | cfv 5888 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
37 | cmin 10266 |
. . . . . . . 8
![]() ![]() | |
38 | 36, 29, 37 | co 6650 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
39 | c4 11072 |
. . . . . . . . 9
![]() ![]() | |
40 | 7, 15 | cdc 11493 |
. . . . . . . . . 10
![]() ![]() ![]() |
41 | 18, 40, 21 | co 6650 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
42 | 39, 41, 23 | co 6650 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
43 | 42, 39, 37 | co 6650 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
44 | clt 10074 |
. . . . . . 7
![]() ![]() | |
45 | 38, 43, 44 | wbr 4653 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
46 | 39, 38, 44 | wbr 4653 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
47 | 33, 45, 46 | w3a 1037 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
48 | cfzo 12465 |
. . . . . 6
![]() | |
49 | 1, 13, 48 | co 6650 |
. . . . 5
![]() ![]() ![]() ![]() ![]() |
50 | 47, 27, 49 | wral 2912 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
51 | 26, 50 | wa 384 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
52 | ciccp 41349 |
. . . 4
![]() | |
53 | 13, 52 | cfv 5888 |
. . 3
![]() ![]() ![]() ![]() ![]() |
54 | 51, 2, 53 | wrex 2913 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
55 | cuz 11687 |
. . 3
![]() ![]() | |
56 | 9, 55 | cfv 5888 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
57 | 54, 12, 56 | wrex 2913 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This axiom is referenced by: tgblthelfgott 41703 |
Copyright terms: Public domain | W3C validator |