Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bgoldbachlt Structured version   Visualization version   Unicode version

Theorem bgoldbachlt 41701
Description: The binary Goldbach conjecture is valid for small even numbers (i.e. for all even numbers less than or equal to a fixed big  m). This is verified for m = 4 x 10^18 by Oliveira e Silva, see ax-bgbltosilva 41698. (Contributed by AV, 3-Aug-2020.) (Revised by AV, 9-Sep-2021.)
Assertion
Ref Expression
bgoldbachlt  |-  E. m  e.  NN  ( ( 4  x.  (; 1 0 ^; 1 8 ) )  <_  m  /\  A. n  e. Even  ( (
4  <  n  /\  n  <  m )  ->  n  e. GoldbachEven  ) )
Distinct variable group:    m, n

Proof of Theorem bgoldbachlt
StepHypRef Expression
1 4nn 11187 . . 3  |-  4  e.  NN
2 10nn 11514 . . . 4  |- ; 1 0  e.  NN
3 1nn0 11308 . . . . 5  |-  1  e.  NN0
4 8nn0 11315 . . . . 5  |-  8  e.  NN0
53, 4deccl 11512 . . . 4  |- ; 1 8  e.  NN0
6 nnexpcl 12873 . . . 4  |-  ( (; 1
0  e.  NN  /\ ; 1 8  e.  NN0 )  -> 
(; 1 0 ^; 1 8 )  e.  NN )
72, 5, 6mp2an 708 . . 3  |-  (; 1 0 ^; 1 8 )  e.  NN
81, 7nnmulcli 11044 . 2  |-  ( 4  x.  (; 1 0 ^; 1 8 ) )  e.  NN
9 id 22 . . 3  |-  ( ( 4  x.  (; 1 0 ^; 1 8 ) )  e.  NN  ->  (
4  x.  (; 1 0 ^; 1 8 ) )  e.  NN )
10 breq2 4657 . . . . 5  |-  ( m  =  ( 4  x.  (; 1 0 ^; 1 8 ) )  ->  ( ( 4  x.  (; 1 0 ^; 1 8 ) )  <_  m  <->  ( 4  x.  (; 1 0 ^; 1 8 ) )  <_  ( 4  x.  (; 1 0 ^; 1 8 ) ) ) )
11 breq2 4657 . . . . . . . 8  |-  ( m  =  ( 4  x.  (; 1 0 ^; 1 8 ) )  ->  ( n  < 
m  <->  n  <  ( 4  x.  (; 1 0 ^; 1 8 ) ) ) )
1211anbi2d 740 . . . . . . 7  |-  ( m  =  ( 4  x.  (; 1 0 ^; 1 8 ) )  ->  ( ( 4  <  n  /\  n  <  m )  <->  ( 4  <  n  /\  n  <  ( 4  x.  (; 1 0 ^; 1 8 ) ) ) ) )
1312imbi1d 331 . . . . . 6  |-  ( m  =  ( 4  x.  (; 1 0 ^; 1 8 ) )  ->  ( ( ( 4  <  n  /\  n  <  m )  ->  n  e. GoldbachEven  )  <->  ( (
4  <  n  /\  n  <  ( 4  x.  (; 1 0 ^; 1 8 ) ) )  ->  n  e. GoldbachEven  ) ) )
1413ralbidv 2986 . . . . 5  |-  ( m  =  ( 4  x.  (; 1 0 ^; 1 8 ) )  ->  ( A. n  e. Even  ( ( 4  < 
n  /\  n  <  m )  ->  n  e. GoldbachEven  )  <->  A. n  e. Even  ( ( 4  <  n  /\  n  <  ( 4  x.  (; 1 0 ^; 1 8 ) ) )  ->  n  e. GoldbachEven  ) ) )
1510, 14anbi12d 747 . . . 4  |-  ( m  =  ( 4  x.  (; 1 0 ^; 1 8 ) )  ->  ( ( ( 4  x.  (; 1 0 ^; 1 8 ) )  <_  m  /\  A. n  e. Even  ( (
4  <  n  /\  n  <  m )  ->  n  e. GoldbachEven  ) )  <->  ( (
4  x.  (; 1 0 ^; 1 8 ) )  <_  ( 4  x.  (; 1 0 ^; 1 8 ) )  /\  A. n  e. Even 
( ( 4  < 
n  /\  n  <  ( 4  x.  (; 1 0 ^; 1 8 ) ) )  ->  n  e. GoldbachEven  ) ) ) )
1615adantl 482 . . 3  |-  ( ( ( 4  x.  (; 1 0 ^; 1 8 ) )  e.  NN  /\  m  =  ( 4  x.  (; 1 0 ^; 1 8 ) ) )  ->  ( (
( 4  x.  (; 1 0 ^; 1 8 ) )  <_  m  /\  A. n  e. Even  ( (
4  <  n  /\  n  <  m )  ->  n  e. GoldbachEven  ) )  <->  ( (
4  x.  (; 1 0 ^; 1 8 ) )  <_  ( 4  x.  (; 1 0 ^; 1 8 ) )  /\  A. n  e. Even 
( ( 4  < 
n  /\  n  <  ( 4  x.  (; 1 0 ^; 1 8 ) ) )  ->  n  e. GoldbachEven  ) ) ) )
17 nnre 11027 . . . . 5  |-  ( ( 4  x.  (; 1 0 ^; 1 8 ) )  e.  NN  ->  (
4  x.  (; 1 0 ^; 1 8 ) )  e.  RR )
1817leidd 10594 . . . 4  |-  ( ( 4  x.  (; 1 0 ^; 1 8 ) )  e.  NN  ->  (
4  x.  (; 1 0 ^; 1 8 ) )  <_  ( 4  x.  (; 1 0 ^; 1 8 ) ) )
19 simplr 792 . . . . . . 7  |-  ( ( ( ( 4  x.  (; 1 0 ^; 1 8 ) )  e.  NN  /\  n  e. Even  )  /\  ( 4  <  n  /\  n  <  ( 4  x.  (; 1 0 ^; 1 8 ) ) ) )  ->  n  e. Even  )
20 simprl 794 . . . . . . 7  |-  ( ( ( ( 4  x.  (; 1 0 ^; 1 8 ) )  e.  NN  /\  n  e. Even  )  /\  ( 4  <  n  /\  n  <  ( 4  x.  (; 1 0 ^; 1 8 ) ) ) )  ->  4  <  n )
21 evenz 41543 . . . . . . . . . . 11  |-  ( n  e. Even  ->  n  e.  ZZ )
2221zred 11482 . . . . . . . . . 10  |-  ( n  e. Even  ->  n  e.  RR )
23 ltle 10126 . . . . . . . . . 10  |-  ( ( n  e.  RR  /\  ( 4  x.  (; 1 0 ^; 1 8 ) )  e.  RR )  -> 
( n  <  (
4  x.  (; 1 0 ^; 1 8 ) )  ->  n  <_  (
4  x.  (; 1 0 ^; 1 8 ) ) ) )
2422, 17, 23syl2anr 495 . . . . . . . . 9  |-  ( ( ( 4  x.  (; 1 0 ^; 1 8 ) )  e.  NN  /\  n  e. Even  )  ->  ( n  <  ( 4  x.  (; 1 0 ^; 1 8 ) )  ->  n  <_  (
4  x.  (; 1 0 ^; 1 8 ) ) ) )
2524a1d 25 . . . . . . . 8  |-  ( ( ( 4  x.  (; 1 0 ^; 1 8 ) )  e.  NN  /\  n  e. Even  )  ->  ( 4  <  n  ->  (
n  <  ( 4  x.  (; 1 0 ^; 1 8 ) )  ->  n  <_  (
4  x.  (; 1 0 ^; 1 8 ) ) ) ) )
2625imp32 449 . . . . . . 7  |-  ( ( ( ( 4  x.  (; 1 0 ^; 1 8 ) )  e.  NN  /\  n  e. Even  )  /\  ( 4  <  n  /\  n  <  ( 4  x.  (; 1 0 ^; 1 8 ) ) ) )  ->  n  <_  ( 4  x.  (; 1 0 ^; 1 8 ) ) )
27 ax-bgbltosilva 41698 . . . . . . 7  |-  ( ( n  e. Even  /\  4  <  n  /\  n  <_ 
( 4  x.  (; 1 0 ^; 1 8 ) ) )  ->  n  e. GoldbachEven  )
2819, 20, 26, 27syl3anc 1326 . . . . . 6  |-  ( ( ( ( 4  x.  (; 1 0 ^; 1 8 ) )  e.  NN  /\  n  e. Even  )  /\  ( 4  <  n  /\  n  <  ( 4  x.  (; 1 0 ^; 1 8 ) ) ) )  ->  n  e. GoldbachEven  )
2928ex 450 . . . . 5  |-  ( ( ( 4  x.  (; 1 0 ^; 1 8 ) )  e.  NN  /\  n  e. Even  )  ->  ( (
4  <  n  /\  n  <  ( 4  x.  (; 1 0 ^; 1 8 ) ) )  ->  n  e. GoldbachEven  ) )
3029ralrimiva 2966 . . . 4  |-  ( ( 4  x.  (; 1 0 ^; 1 8 ) )  e.  NN  ->  A. n  e. Even  ( ( 4  < 
n  /\  n  <  ( 4  x.  (; 1 0 ^; 1 8 ) ) )  ->  n  e. GoldbachEven  ) )
3118, 30jca 554 . . 3  |-  ( ( 4  x.  (; 1 0 ^; 1 8 ) )  e.  NN  ->  (
( 4  x.  (; 1 0 ^; 1 8 ) )  <_  ( 4  x.  (; 1 0 ^; 1 8 ) )  /\  A. n  e. Even 
( ( 4  < 
n  /\  n  <  ( 4  x.  (; 1 0 ^; 1 8 ) ) )  ->  n  e. GoldbachEven  ) ) )
329, 16, 31rspcedvd 3317 . 2  |-  ( ( 4  x.  (; 1 0 ^; 1 8 ) )  e.  NN  ->  E. m  e.  NN  ( ( 4  x.  (; 1 0 ^; 1 8 ) )  <_  m  /\  A. n  e. Even  ( (
4  <  n  /\  n  <  m )  ->  n  e. GoldbachEven  ) ) )
338, 32ax-mp 5 1  |-  E. m  e.  NN  ( ( 4  x.  (; 1 0 ^; 1 8 ) )  <_  m  /\  A. n  e. Even  ( (
4  <  n  /\  n  <  m )  ->  n  e. GoldbachEven  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   class class class wbr 4653  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074    <_ cle 10075   NNcn 11020   4c4 11072   8c8 11076   NN0cn0 11292  ;cdc 11493   ^cexp 12860   Even ceven 41537   GoldbachEven cgbe 41633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-bgbltosilva 41698
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-seq 12802  df-exp 12861  df-even 41539
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator