| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax-i2m1 | Structured version Visualization version Unicode version | ||
| Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom 12 of 22 for real and complex numbers, justified by theorem axi2m1 9980. (Contributed by NM, 29-Jan-1995.) |
| Ref | Expression |
|---|---|
| ax-i2m1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ci 9938 |
. . . 4
| |
| 2 | cmul 9941 |
. . . 4
| |
| 3 | 1, 1, 2 | co 6650 |
. . 3
|
| 4 | c1 9937 |
. . 3
| |
| 5 | caddc 9939 |
. . 3
| |
| 6 | 3, 4, 5 | co 6650 |
. 2
|
| 7 | cc0 9936 |
. 2
| |
| 8 | 6, 7 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This axiom is referenced by: 0cn 10032 mul02lem2 10213 addid1 10216 cnegex2 10218 ine0 10465 ixi 10656 inelr 11010 |
| Copyright terms: Public domain | W3C validator |