MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-i2m1 Structured version   Visualization version   GIF version

Axiom ax-i2m1 10004
Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom 12 of 22 for real and complex numbers, justified by theorem axi2m1 9980. (Contributed by NM, 29-Jan-1995.)
Assertion
Ref Expression
ax-i2m1 ((i · i) + 1) = 0

Detailed syntax breakdown of Axiom ax-i2m1
StepHypRef Expression
1 ci 9938 . . . 4 class i
2 cmul 9941 . . . 4 class ·
31, 1, 2co 6650 . . 3 class (i · i)
4 c1 9937 . . 3 class 1
5 caddc 9939 . . 3 class +
63, 4, 5co 6650 . 2 class ((i · i) + 1)
7 cc0 9936 . 2 class 0
86, 7wceq 1483 1 wff ((i · i) + 1) = 0
Colors of variables: wff setvar class
This axiom is referenced by:  0cn  10032  mul02lem2  10213  addid1  10216  cnegex2  10218  ine0  10465  ixi  10656  inelr  11010
  Copyright terms: Public domain W3C validator