MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-rnegex Structured version   Visualization version   Unicode version

Axiom ax-rnegex 10007
Description: Existence of negative of real number. Axiom 15 of 22 for real and complex numbers, justified by theorem axrnegex 9983. (Contributed by Eric Schmidt, 21-May-2007.)
Assertion
Ref Expression
ax-rnegex  |-  ( A  e.  RR  ->  E. x  e.  RR  ( A  +  x )  =  0 )
Distinct variable group:    x, A

Detailed syntax breakdown of Axiom ax-rnegex
StepHypRef Expression
1 cA . . 3  class  A
2 cr 9935 . . 3  class  RR
31, 2wcel 1990 . 2  wff  A  e.  RR
4 vx . . . . . 6  setvar  x
54cv 1482 . . . . 5  class  x
6 caddc 9939 . . . . 5  class  +
71, 5, 6co 6650 . . . 4  class  ( A  +  x )
8 cc0 9936 . . . 4  class  0
97, 8wceq 1483 . . 3  wff  ( A  +  x )  =  0
109, 4, 2wrex 2913 . 2  wff  E. x  e.  RR  ( A  +  x )  =  0
113, 10wi 4 1  wff  ( A  e.  RR  ->  E. x  e.  RR  ( A  +  x )  =  0 )
Colors of variables: wff setvar class
This axiom is referenced by:  0re  10040  00id  10211  addid1  10216  cnegex  10217  renegcli  10342
  Copyright terms: Public domain W3C validator