![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax-rnegex | Structured version Visualization version Unicode version |
Description: Existence of negative of real number. Axiom 15 of 22 for real and complex numbers, justified by theorem axrnegex 9983. (Contributed by Eric Schmidt, 21-May-2007.) |
Ref | Expression |
---|---|
ax-rnegex |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA |
. . 3
![]() ![]() | |
2 | cr 9935 |
. . 3
![]() ![]() | |
3 | 1, 2 | wcel 1990 |
. 2
![]() ![]() ![]() ![]() |
4 | vx |
. . . . . 6
![]() ![]() | |
5 | 4 | cv 1482 |
. . . . 5
![]() ![]() |
6 | caddc 9939 |
. . . . 5
![]() ![]() | |
7 | 1, 5, 6 | co 6650 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
8 | cc0 9936 |
. . . 4
![]() ![]() | |
9 | 7, 8 | wceq 1483 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 9, 4, 2 | wrex 2913 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 3, 10 | wi 4 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This axiom is referenced by: 0re 10040 00id 10211 addid1 10216 cnegex 10217 renegcli 10342 |
Copyright terms: Public domain | W3C validator |