| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > renegcli | Structured version Visualization version Unicode version | ||
| Description: Closure law for negative of reals. (Note: this inference proof style and the deduction theorem usage in renegcl 10344 is deprecated, but is retained for its demonstration value.) (Contributed by NM, 17-Jan-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| renegcl.1 |
|
| Ref | Expression |
|---|---|
| renegcli |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcl.1 |
. 2
| |
| 2 | ax-rnegex 10007 |
. 2
| |
| 3 | recn 10026 |
. . . . 5
| |
| 4 | df-neg 10269 |
. . . . . . 7
| |
| 5 | 4 | eqeq1i 2627 |
. . . . . 6
|
| 6 | 0cn 10032 |
. . . . . . 7
| |
| 7 | 1 | recni 10052 |
. . . . . . 7
|
| 8 | subadd 10284 |
. . . . . . 7
| |
| 9 | 6, 7, 8 | mp3an12 1414 |
. . . . . 6
|
| 10 | 5, 9 | syl5bb 272 |
. . . . 5
|
| 11 | 3, 10 | syl 17 |
. . . 4
|
| 12 | eleq1a 2696 |
. . . 4
| |
| 13 | 11, 12 | sylbird 250 |
. . 3
|
| 14 | 13 | rexlimiv 3027 |
. 2
|
| 15 | 1, 2, 14 | mp2b 10 |
1
|
| Copyright terms: Public domain | W3C validator |