MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnegex Structured version   Visualization version   Unicode version

Theorem cnegex 10217
Description: Existence of the negative of a complex number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
cnegex  |-  ( A  e.  CC  ->  E. x  e.  CC  ( A  +  x )  =  0 )
Distinct variable group:    x, A

Proof of Theorem cnegex
Dummy variables  a 
b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 10036 . 2  |-  ( A  e.  CC  ->  E. a  e.  RR  E. b  e.  RR  A  =  ( a  +  ( _i  x.  b ) ) )
2 ax-rnegex 10007 . . . . . . 7  |-  ( a  e.  RR  ->  E. c  e.  RR  ( a  +  c )  =  0 )
3 ax-rnegex 10007 . . . . . . 7  |-  ( b  e.  RR  ->  E. d  e.  RR  ( b  +  d )  =  0 )
42, 3anim12i 590 . . . . . 6  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( E. c  e.  RR  ( a  +  c )  =  0  /\  E. d  e.  RR  ( b  +  d )  =  0 ) )
5 reeanv 3107 . . . . . 6  |-  ( E. c  e.  RR  E. d  e.  RR  (
( a  +  c )  =  0  /\  ( b  +  d )  =  0 )  <-> 
( E. c  e.  RR  ( a  +  c )  =  0  /\  E. d  e.  RR  ( b  +  d )  =  0 ) )
64, 5sylibr 224 . . . . 5  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  E. c  e.  RR  E. d  e.  RR  (
( a  +  c )  =  0  /\  ( b  +  d )  =  0 ) )
7 ax-icn 9995 . . . . . . . . . . 11  |-  _i  e.  CC
87a1i 11 . . . . . . . . . 10  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  _i  e.  CC )
9 simplrr 801 . . . . . . . . . . 11  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  d  e.  RR )
109recnd 10068 . . . . . . . . . 10  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  d  e.  CC )
118, 10mulcld 10060 . . . . . . . . 9  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( _i  x.  d )  e.  CC )
12 simplrl 800 . . . . . . . . . 10  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  c  e.  RR )
1312recnd 10068 . . . . . . . . 9  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  c  e.  CC )
1411, 13addcld 10059 . . . . . . . 8  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( ( _i  x.  d )  +  c )  e.  CC )
15 simplll 798 . . . . . . . . . . . . . 14  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  a  e.  RR )
1615recnd 10068 . . . . . . . . . . . . 13  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  a  e.  CC )
17 simpllr 799 . . . . . . . . . . . . . . 15  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  b  e.  RR )
1817recnd 10068 . . . . . . . . . . . . . 14  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  b  e.  CC )
198, 18mulcld 10060 . . . . . . . . . . . . 13  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( _i  x.  b )  e.  CC )
2016, 19, 11addassd 10062 . . . . . . . . . . . 12  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( ( a  +  ( _i  x.  b ) )  +  ( _i  x.  d
) )  =  ( a  +  ( ( _i  x.  b )  +  ( _i  x.  d ) ) ) )
218, 18, 10adddid 10064 . . . . . . . . . . . . . 14  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( _i  x.  ( b  +  d ) )  =  ( ( _i  x.  b
)  +  ( _i  x.  d ) ) )
22 simprr 796 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( b  +  d )  =  0 )
2322oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( _i  x.  ( b  +  d ) )  =  ( _i  x.  0 ) )
24 mul01 10215 . . . . . . . . . . . . . . . 16  |-  ( _i  e.  CC  ->  (
_i  x.  0 )  =  0 )
257, 24ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( _i  x.  0 )  =  0
2623, 25syl6eq 2672 . . . . . . . . . . . . . 14  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( _i  x.  ( b  +  d ) )  =  0 )
2721, 26eqtr3d 2658 . . . . . . . . . . . . 13  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( ( _i  x.  b )  +  ( _i  x.  d
) )  =  0 )
2827oveq2d 6666 . . . . . . . . . . . 12  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( a  +  ( ( _i  x.  b )  +  ( _i  x.  d ) ) )  =  ( a  +  0 ) )
29 addid1 10216 . . . . . . . . . . . . 13  |-  ( a  e.  CC  ->  (
a  +  0 )  =  a )
3016, 29syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( a  +  0 )  =  a )
3120, 28, 303eqtrd 2660 . . . . . . . . . . 11  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( ( a  +  ( _i  x.  b ) )  +  ( _i  x.  d
) )  =  a )
3231oveq1d 6665 . . . . . . . . . 10  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( ( ( a  +  ( _i  x.  b ) )  +  ( _i  x.  d ) )  +  c )  =  ( a  +  c ) )
3316, 19addcld 10059 . . . . . . . . . . 11  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( a  +  ( _i  x.  b
) )  e.  CC )
3433, 11, 13addassd 10062 . . . . . . . . . 10  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( ( ( a  +  ( _i  x.  b ) )  +  ( _i  x.  d ) )  +  c )  =  ( ( a  +  ( _i  x.  b ) )  +  ( ( _i  x.  d )  +  c ) ) )
3532, 34eqtr3d 2658 . . . . . . . . 9  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( a  +  c )  =  ( ( a  +  ( _i  x.  b ) )  +  ( ( _i  x.  d )  +  c ) ) )
36 simprl 794 . . . . . . . . 9  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( a  +  c )  =  0 )
3735, 36eqtr3d 2658 . . . . . . . 8  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( ( a  +  ( _i  x.  b ) )  +  ( ( _i  x.  d )  +  c ) )  =  0 )
38 oveq2 6658 . . . . . . . . . 10  |-  ( x  =  ( ( _i  x.  d )  +  c )  ->  (
( a  +  ( _i  x.  b ) )  +  x )  =  ( ( a  +  ( _i  x.  b ) )  +  ( ( _i  x.  d )  +  c ) ) )
3938eqeq1d 2624 . . . . . . . . 9  |-  ( x  =  ( ( _i  x.  d )  +  c )  ->  (
( ( a  +  ( _i  x.  b
) )  +  x
)  =  0  <->  (
( a  +  ( _i  x.  b ) )  +  ( ( _i  x.  d )  +  c ) )  =  0 ) )
4039rspcev 3309 . . . . . . . 8  |-  ( ( ( ( _i  x.  d )  +  c )  e.  CC  /\  ( ( a  +  ( _i  x.  b
) )  +  ( ( _i  x.  d
)  +  c ) )  =  0 )  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  +  x
)  =  0 )
4114, 37, 40syl2anc 693 . . . . . . 7  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  +  x
)  =  0 )
4241ex 450 . . . . . 6  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  ( c  e.  RR  /\  d  e.  RR ) )  -> 
( ( ( a  +  c )  =  0  /\  ( b  +  d )  =  0 )  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b ) )  +  x )  =  0 ) )
4342rexlimdvva 3038 . . . . 5  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( E. c  e.  RR  E. d  e.  RR  ( ( a  +  c )  =  0  /\  ( b  +  d )  =  0 )  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b ) )  +  x )  =  0 ) )
446, 43mpd 15 . . . 4  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  +  x
)  =  0 )
45 oveq1 6657 . . . . . 6  |-  ( A  =  ( a  +  ( _i  x.  b
) )  ->  ( A  +  x )  =  ( ( a  +  ( _i  x.  b ) )  +  x ) )
4645eqeq1d 2624 . . . . 5  |-  ( A  =  ( a  +  ( _i  x.  b
) )  ->  (
( A  +  x
)  =  0  <->  (
( a  +  ( _i  x.  b ) )  +  x )  =  0 ) )
4746rexbidv 3052 . . . 4  |-  ( A  =  ( a  +  ( _i  x.  b
) )  ->  ( E. x  e.  CC  ( A  +  x
)  =  0  <->  E. x  e.  CC  (
( a  +  ( _i  x.  b ) )  +  x )  =  0 ) )
4844, 47syl5ibrcom 237 . . 3  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( A  =  ( a  +  ( _i  x.  b ) )  ->  E. x  e.  CC  ( A  +  x
)  =  0 ) )
4948rexlimivv 3036 . 2  |-  ( E. a  e.  RR  E. b  e.  RR  A  =  ( a  +  ( _i  x.  b
) )  ->  E. x  e.  CC  ( A  +  x )  =  0 )
501, 49syl 17 1  |-  ( A  e.  CC  ->  E. x  e.  CC  ( A  +  x )  =  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   _ici 9938    + caddc 9939    x. cmul 9941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079
This theorem is referenced by:  addid2  10219  addcan2  10221  0cnALT  10270  negeu  10271
  Copyright terms: Public domain W3C validator