| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax6vsep | Structured version Visualization version Unicode version | ||
| Description: Derive ax6v 1889
(a weakened version of ax-6 1888 where |
| Ref | Expression |
|---|---|
| ax6vsep |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-sep 4781 |
. . 3
| |
| 2 | id 22 |
. . . . . . . . 9
| |
| 3 | 2 | biantru 526 |
. . . . . . . 8
|
| 4 | 3 | bibi2i 327 |
. . . . . . 7
|
| 5 | 4 | biimpri 218 |
. . . . . 6
|
| 6 | 5 | alimi 1739 |
. . . . 5
|
| 7 | ax-ext 2602 |
. . . . 5
| |
| 8 | 6, 7 | syl 17 |
. . . 4
|
| 9 | 8 | eximi 1762 |
. . 3
|
| 10 | 1, 9 | ax-mp 5 |
. 2
|
| 11 | df-ex 1705 |
. 2
| |
| 12 | 10, 11 | mpbi 220 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-ext 2602 ax-sep 4781 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |