| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bm1.3ii | Structured version Visualization version Unicode version | ||
| Description: Convert implication to equivalence using the Separation Scheme (Aussonderung) ax-sep 4781. Similar to Theorem 1.3ii of [BellMachover] p. 463. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| bm1.3ii.1 |
|
| Ref | Expression |
|---|---|
| bm1.3ii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.42v 1918 |
. . 3
| |
| 2 | bimsc1 980 |
. . . . 5
| |
| 3 | 2 | alanimi 1744 |
. . . 4
|
| 4 | 3 | eximi 1762 |
. . 3
|
| 5 | 1, 4 | sylbir 225 |
. 2
|
| 6 | bm1.3ii.1 |
. . . . 5
| |
| 7 | elequ2 2004 |
. . . . . . . 8
| |
| 8 | 7 | imbi2d 330 |
. . . . . . 7
|
| 9 | 8 | albidv 1849 |
. . . . . 6
|
| 10 | 9 | cbvexv 2275 |
. . . . 5
|
| 11 | 6, 10 | mpbi 220 |
. . . 4
|
| 12 | ax-sep 4781 |
. . . 4
| |
| 13 | 11, 12 | pm3.2i 471 |
. . 3
|
| 14 | 13 | exan 1788 |
. 2
|
| 15 | 5, 14 | exlimiiv 1859 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-11 2034 ax-12 2047 ax-13 2246 ax-sep 4781 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
| This theorem is referenced by: axpow3 4846 pwex 4848 zfpair2 4907 axun2 6951 uniex2 6952 |
| Copyright terms: Public domain | W3C validator |