MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bm1.3ii Structured version   Visualization version   Unicode version

Theorem bm1.3ii 4784
Description: Convert implication to equivalence using the Separation Scheme (Aussonderung) ax-sep 4781. Similar to Theorem 1.3ii of [BellMachover] p. 463. (Contributed by NM, 21-Jun-1993.)
Hypothesis
Ref Expression
bm1.3ii.1  |-  E. x A. y ( ph  ->  y  e.  x )
Assertion
Ref Expression
bm1.3ii  |-  E. x A. y ( y  e.  x  <->  ph )
Distinct variable groups:    ph, x    x, y
Allowed substitution hint:    ph( y)

Proof of Theorem bm1.3ii
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 19.42v 1918 . . 3  |-  ( E. x ( A. y
( ph  ->  y  e.  z )  /\  A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )  <->  ( A. y ( ph  ->  y  e.  z )  /\  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) ) )
2 bimsc1 980 . . . . 5  |-  ( ( ( ph  ->  y  e.  z )  /\  (
y  e.  x  <->  ( y  e.  z  /\  ph )
) )  ->  (
y  e.  x  <->  ph ) )
32alanimi 1744 . . . 4  |-  ( ( A. y ( ph  ->  y  e.  z )  /\  A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )  ->  A. y
( y  e.  x  <->  ph ) )
43eximi 1762 . . 3  |-  ( E. x ( A. y
( ph  ->  y  e.  z )  /\  A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )  ->  E. x A. y ( y  e.  x  <->  ph ) )
51, 4sylbir 225 . 2  |-  ( ( A. y ( ph  ->  y  e.  z )  /\  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )  ->  E. x A. y ( y  e.  x  <->  ph ) )
6 bm1.3ii.1 . . . . 5  |-  E. x A. y ( ph  ->  y  e.  x )
7 elequ2 2004 . . . . . . . 8  |-  ( x  =  z  ->  (
y  e.  x  <->  y  e.  z ) )
87imbi2d 330 . . . . . . 7  |-  ( x  =  z  ->  (
( ph  ->  y  e.  x )  <->  ( ph  ->  y  e.  z ) ) )
98albidv 1849 . . . . . 6  |-  ( x  =  z  ->  ( A. y ( ph  ->  y  e.  x )  <->  A. y
( ph  ->  y  e.  z ) ) )
109cbvexv 2275 . . . . 5  |-  ( E. x A. y (
ph  ->  y  e.  x
)  <->  E. z A. y
( ph  ->  y  e.  z ) )
116, 10mpbi 220 . . . 4  |-  E. z A. y ( ph  ->  y  e.  z )
12 ax-sep 4781 . . . 4  |-  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
)
1311, 12pm3.2i 471 . . 3  |-  ( E. z A. y (
ph  ->  y  e.  z )  /\  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )
1413exan 1788 . 2  |-  E. z
( A. y (
ph  ->  y  e.  z )  /\  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )
155, 14exlimiiv 1859 1  |-  E. x A. y ( y  e.  x  <->  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-11 2034  ax-12 2047  ax-13 2246  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705
This theorem is referenced by:  axpow3  4846  pwex  4848  zfpair2  4907  axun2  6951  uniex2  6952
  Copyright terms: Public domain W3C validator