MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc11nlemOLD2 Structured version   Visualization version   Unicode version

Theorem axc11nlemOLD2 1988
Description: Lemma for axc11n 2307. Change bound variable in an equality. Obsolete as of 29-Mar-2021. Use aev 1983 instead. (Contributed by NM, 8-Jul-2016.) (Proof shortened by Wolf Lammen, 17-Feb-2018.) Restructure to ease either bundling, or reducing dependencies on axioms. (Revised by Wolf Lammen, 30-Nov-2019.) Remove dependency on ax-12 2047. (Revised by Wolf Lammen, 14-Mar-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
axc11nlemOLD2.1  |-  ( -. 
A. y  y  =  x  ->  ( x  =  z  ->  A. y  x  =  z )
)
Assertion
Ref Expression
axc11nlemOLD2  |-  ( A. x  x  =  z  ->  A. y  y  =  x )
Distinct variable groups:    x, z    y, z

Proof of Theorem axc11nlemOLD2
StepHypRef Expression
1 cbvaev 1979 . . 3  |-  ( A. x  x  =  z  ->  A. y  y  =  z )
2 equequ2 1953 . . . . 5  |-  ( x  =  z  ->  (
y  =  x  <->  y  =  z ) )
32biimprd 238 . . . 4  |-  ( x  =  z  ->  (
y  =  z  -> 
y  =  x ) )
43al2imi 1743 . . 3  |-  ( A. y  x  =  z  ->  ( A. y  y  =  z  ->  A. y 
y  =  x ) )
51, 4syl5com 31 . 2  |-  ( A. x  x  =  z  ->  ( A. y  x  =  z  ->  A. y 
y  =  x ) )
6 spaev 1978 . . . 4  |-  ( A. x  x  =  z  ->  x  =  z )
7 axc11nlemOLD2.1 . . . 4  |-  ( -. 
A. y  y  =  x  ->  ( x  =  z  ->  A. y  x  =  z )
)
86, 7syl5com 31 . . 3  |-  ( A. x  x  =  z  ->  ( -.  A. y 
y  =  x  ->  A. y  x  =  z ) )
98con1d 139 . 2  |-  ( A. x  x  =  z  ->  ( -.  A. y  x  =  z  ->  A. y  y  =  x ) )
105, 9pm2.61d 170 1  |-  ( A. x  x  =  z  ->  A. y  y  =  x )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705
This theorem is referenced by:  aevlemOLD  1989  axc11nOLDOLD  2309
  Copyright terms: Public domain W3C validator