![]() |
Metamath
Proof Explorer Theorem List (p. 20 of 426) | < Previous Next > |
Browser slow? Try the
Unicode version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27775) |
![]() (27776-29300) |
![]() (29301-42551) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | 19.34 1901 | Theorem 19.34 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 19.23v 1902* | Version of 19.23 2080 with a dv condition instead of a non-freeness hypothesis. (Contributed by NM, 28-Jun-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 11-Jan-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 19.23vv 1903* | Theorem 19.23v 1902 extended to two variables. (Contributed by NM, 10-Aug-2004.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 19.36v 1904* | Version of 19.36 2098 with a dv condition instead of a non-freeness hypothesis. (Contributed by NM, 18-Aug-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 17-Jan-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 19.36iv 1905* | Inference associated with 19.36v 1904. Version of 19.36i 2099 with a dv condition. (Contributed by NM, 5-Aug-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 17-Jan-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | pm11.53v 1906* | Version of pm11.53 2179 with a dv condition, requiring fewer axioms. (Contributed by BJ, 7-Mar-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 19.12vvv 1907* | Version of 19.12vv 2180 with a dv condition, requiring fewer axioms. See also 19.12 2164. (Contributed by BJ, 18-Mar-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 19.27v 1908* | Version of 19.27 2095 with a dv condition, requiring fewer axioms. (Contributed by NM, 3-Jun-2004.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 19.28v 1909* | Version of 19.28 2096 with a dv condition, requiring fewer axioms. (Contributed by NM, 25-Mar-2004.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 19.37v 1910* | Version of 19.37 2100 with a dv condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 19.37iv 1911* | Inference associated with 19.37v 1910. (Contributed by NM, 5-Aug-1993.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 19.44v 1912* | Version of 19.44 2106 with a dv condition, requiring fewer axioms. (Contributed by NM, 12-Mar-1993.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 19.45v 1913* | Version of 19.45 2107 with a dv condition, requiring fewer axioms. (Contributed by NM, 12-Mar-1993.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 19.41v 1914* | Version of 19.41 2103 with a dv condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 19.41vv 1915* | Version of 19.41 2103 with two quantifiers and a dv condition requiring fewer axioms. (Contributed by NM, 30-Apr-1995.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 19.41vvv 1916* | Version of 19.41 2103 with three quantifiers and a dv condition requiring fewer axioms. (Contributed by NM, 30-Apr-1995.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 19.41vvvv 1917* | Version of 19.41 2103 with four quantifiers and a dv condition requiring fewer axioms. (Contributed by FL, 14-Jul-2007.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 19.42v 1918* | Version of 19.42 2105 with a dv condition requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | exdistr 1919* | Distribution of existential quantifiers. (Contributed by NM, 9-Mar-1995.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 19.42vv 1920* | Version of 19.42 2105 with two quantifiers and a dv condition requiring fewer axioms. (Contributed by NM, 16-Mar-1995.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 19.42vvv 1921* | Version of 19.42 2105 with three quantifiers and a dv condition requiring fewer axioms. (Contributed by NM, 21-Sep-2011.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | exdistr2 1922* | Distribution of existential quantifiers. (Contributed by NM, 17-Mar-1995.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 3exdistr 1923* | Distribution of existential quantifiers in a triple conjunction. (Contributed by NM, 9-Mar-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 4exdistr 1924* | Distribution of existential quantifiers in a quadruple conjunction. (Contributed by NM, 9-Mar-1995.) (Proof shortened by Wolf Lammen, 20-Jan-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | spimeh 1925* | Existential introduction, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Wolf Lammen, 10-Dec-2017.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | spimw 1926* | Specialization. Lemma 8 of [KalishMontague] p. 87. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017.) (Proof shortened by Wolf Lammen, 7-Aug-2017.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | spimvw 1927* | Specialization. Lemma 8 of [KalishMontague] p. 87. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | spnfw 1928 | Weak version of sp 2053. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 1-Aug-2017.) (Proof shortened by Wolf Lammen, 13-Aug-2017.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | spfalw 1929 |
Version of sp 2053 when ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | equs4v 1930* | Version of equs4 2290 with a dv condition, which requires fewer axioms. (Contributed by BJ, 31-May-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | equsalvw 1931* | Version of equsalv 2108 with a dv condition, and of equsal 2291 with two dv conditions, which requires fewer axioms. See also the dual form equsexvw 1932. (Contributed by BJ, 31-May-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | equsexvw 1932* | Version of equsexv 2109 with a dv condition, and of equsex 2292 with two dv conditions, which requires fewer axioms. See also the dual form equsalvw 1931. (Contributed by BJ, 31-May-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | cbvaliw 1933* | Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of [KalishMontague] p. 86. (Contributed by NM, 19-Apr-2017.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | cbvalivw 1934* | Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of [KalishMontague] p. 86. (Contributed by NM, 9-Apr-2017.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-7 1935 |
Axiom of Equality. One of the equality and substitution axioms of
predicate calculus with equality. It states that equality is a
right-Euclidean binary relation (this is similar, but not identical, to
being transitive, which is proved as equtr 1948). This axiom scheme is a
sub-scheme of Axiom Scheme B8 of system S2 of [Tarski], p. 75, whose
general form cannot be represented with our notation. Also appears as
Axiom C7 of [Monk2] p. 105 and Axiom Scheme
C8' in [Megill] p. 448 (p. 16
of the preprint).
The equality symbol was invented in 1557 by Robert Recorde. He chose a pair of parallel lines of the same length because "noe .2. thynges, can be moare equalle."
We prove in ax7 1943 that this axiom can be recovered from its
weakened
version ax7v 1936 where |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ax7v 1936* |
Weakened version of ax-7 1935, with a dv condition on ![]() ![]() ![]()
In ax7v 1936, it is still allowed to substitute the same
variable for
|
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ax7v1 1937* |
First of two weakened versions of ax7v 1936, with an extra dv condition on
![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ax7v2 1938* |
Second of two weakened versions of ax7v 1936, with an extra dv condition
on ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | equid 1939 | Identity law for equality. Lemma 2 of [KalishMontague] p. 85. See also Lemma 6 of [Tarski] p. 68. (Contributed by NM, 1-Apr-2005.) (Revised by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 5-Feb-2018.) (Proof shortened by Wolf Lammen, 22-Aug-2020.) |
![]() ![]() ![]() ![]() | ||
Theorem | nfequid 1940 |
Bound-variable hypothesis builder for ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | equcomiv 1941* |
Weaker form of equcomi 1944 with a dv condition on ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ax6evr 1942* | A commuted form of ax6ev 1890. (Contributed by BJ, 7-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ax7 1943 |
Proof of ax-7 1935 from ax7v1 1937 and ax7v2 1938, proving sufficiency of the
conjunction of the latter two weakened versions of ax7v 1936,
which is
itself a weakened version of ax-7 1935.
Note that the weakened version of ax-7 1935
obtained by adding a dv
condition on |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | equcomi 1944 | Commutative law for equality. Equality is a symmetric relation. Lemma 3 of [KalishMontague] p. 85. See also Lemma 7 of [Tarski] p. 69. (Contributed by NM, 10-Jan-1993.) (Revised by NM, 9-Apr-2017.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | equcom 1945 | Commutative law for equality. Equality is a symmetric relation. (Contributed by NM, 20-Aug-1993.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | equcomd 1946 | Deduction form of equcom 1945, symmetry of equality. For the versions for classes, see eqcom 2629 and eqcomd 2628. (Contributed by BJ, 6-Oct-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | equcoms 1947 | An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 10-Jan-1993.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | equtr 1948 | A transitive law for equality. (Contributed by NM, 23-Aug-1993.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | equtrr 1949 | A transitive law for equality. Lemma L17 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 23-Aug-1993.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | equeuclr 1950 | Commuted version of equeucl 1951 (equality is left-Euclidean). (Contributed by BJ, 12-Apr-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | equeucl 1951 | Equality is a left-Euclidean binary relation. (Right-Euclideanness is stated in ax-7 1935.) Curried (exported) form of equtr2 1954. (Contributed by BJ, 11-Apr-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | equequ1 1952 | An equivalence law for equality. (Contributed by NM, 1-Aug-1993.) (Proof shortened by Wolf Lammen, 10-Dec-2017.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | equequ2 1953 | An equivalence law for equality. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 4-Aug-2017.) (Proof shortened by BJ, 12-Apr-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | equtr2 1954 | Equality is a left-Euclidean binary relation. Uncurried (imported) form of equeucl 1951. (Contributed by NM, 12-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by BJ, 11-Apr-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | equequ2OLD 1955 | Obsolete proof of equequ2 1953 as of 12-Apr-2021. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 4-Aug-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | equtr2OLD 1956 | Obsolete proof of equtr2 1954 as of 11-Apr-2021. (Contributed by NM, 12-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | stdpc6 1957 | One of the two equality axioms of standard predicate calculus, called reflexivity of equality. (The other one is stdpc7 1958.) Axiom 6 of [Mendelson] p. 95. Mendelson doesn't say why he prepended the redundant quantifier, but it was probably to be compatible with free logic (which is valid in the empty domain). (Contributed by NM, 16-Feb-2005.) |
![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | stdpc7 1958 |
One of the two equality axioms of standard predicate calculus, called
substitutivity of equality. (The other one is stdpc6 1957.) Translated to
traditional notation, it can be read:
"![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | equvinv 1959* |
A variable introduction law for equality. Lemma 15 of [Monk2] p. 109.
(Contributed by NM, 9-Jan-1993.) Remove dependencies on ax-10 2019,
ax-13 2246. (Revised by Wolf Lammen, 10-Jun-2019.)
Move the quantified
variable (![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | equviniva 1960* | A modified version of the forward implication of equvinv 1959 adapted to common usage. (Contributed by Wolf Lammen, 8-Sep-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | equvinivOLD 1961* | The forward implication of equvinv 1959. Obsolete as of 11-Apr-2021. Use equvinv 1959 instead. (Contributed by Wolf Lammen, 11-Apr-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | equvinvOLD 1962* | Obsolete version of equvinv 1959 as of 11-Apr-2021. (Contributed by NM, 9-Jan-1993.) Remove dependencies on ax-10 2019, ax-13 2246. (Revised by Wolf Lammen, 10-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | equvelv 1963* | A specialized version of equvel 2347 with distinct variable restrictions and fewer axiom usage. (Contributed by Wolf Lammen, 10-Apr-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ax13b 1964 | An equivalence between two ways of expressing ax-13 2246. See the comment for ax-13 2246. (Contributed by NM, 2-May-2017.) (Proof shortened by Wolf Lammen, 26-Feb-2018.) (Revised by BJ, 15-Sep-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | spfw 1965* | Weak version of sp 2053. Uses only Tarski's FOL axiom schemes. Lemma 9 of [KalishMontague] p. 87. This may be the best we can do with minimal distinct variable conditions. (Contributed by NM, 19-Apr-2017.) (Proof shortened by Wolf Lammen, 10-Oct-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | spfwOLD 1966* | Obsolete proof of spfw 1965 as of 10-Oct-2021. (Contributed by NM, 19-Apr-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | spw 1967* |
Weak version of the specialization scheme sp 2053. Lemma 9 of
[KalishMontague] p. 87. While
it appears that sp 2053 in its general form
does not follow from Tarski's FOL axiom schemes, from this theorem we
can prove any instance of sp 2053 having mutually distinct setvar
variables and no wff metavariables (see ax12wdemo 2012 for an example of
the procedure to eliminate the hypothesis). Other approximations of
sp 2053 are spfw 1965 (minimal distinct variable
requirements), spnfw 1928 (when
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | cbvalw 1968* | Change bound variable. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | cbvalvw 1969* | Change bound variable. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Feb-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | cbvexvw 1970* | Change bound variable. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | alcomiw 1971* | Weak version of alcom 2037. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 10-Apr-2017.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hbn1fw 1972* | Weak version of ax-10 2019 from which we can prove any ax-10 2019 instance not involving wff variables or bundling. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Feb-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hbn1w 1973* | Weak version of hbn1 2020. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hba1w 1974* | Weak version of hba1 2151. See comments for ax10w 2006. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 10-Oct-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hba1wOLD 1975* | Obsolete proof of hba1w 1974 as of 10-Oct-2021. (Contributed by NM, 9-Apr-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hbe1w 1976* | Weak version of hbe1 2021. See comments for ax10w 2006. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hbalw 1977* |
Weak version of hbal 2036. Uses only Tarski's FOL axiom schemes.
Unlike
hbal 2036, this theorem requires that ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | spaev 1978* |
A special instance of sp 2053 applied to an equality with a dv condition.
Unlike the more general sp 2053, we can prove this without ax-12 2047.
Instance of aeveq 1982.
The antecedent
Separating this degenerate case from a richer universe, where inequality
is possible, is a common proof idea. The name of this theorem follows a
convention, where the condition |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | cbvaev 1979* | Change bound variable in an equality with a dv condition. Instance of aev 1983. (Contributed by NM, 22-Jul-2015.) (Revised by BJ, 18-Jun-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | aevlem0 1980* | Lemma for aevlem 1981. Instance of aev 1983. (Contributed by NM, 8-Jul-2016.) (Proof shortened by Wolf Lammen, 17-Feb-2018.) Remove dependency on ax-12 2047. (Revised by Wolf Lammen, 14-Mar-2021.) (Revised by BJ, 29-Mar-2021.) (Proof shortened by Wolf Lammen, 30-Mar-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | aevlem 1981* | Lemma for aev 1983 and axc16g 2134. Change free and bound variables. Instance of aev 1983. (Contributed by NM, 22-Jul-2015.) (Proof shortened by Wolf Lammen, 17-Feb-2018.) Remove dependency on ax-13 2246, along an idea of BJ. (Revised by Wolf Lammen, 30-Nov-2019.) (Revised by BJ, 29-Mar-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | aeveq 1982* |
The antecedent ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | aev 1983* | A "distinctor elimination" lemma with no restrictions on variables in the consequent. (Contributed by NM, 8-Nov-2006.) Remove dependency on ax-11 2034. (Revised by Wolf Lammen, 7-Sep-2018.) Remove dependency on ax-13 2246, inspired by an idea of BJ. (Revised by Wolf Lammen, 30-Nov-2019.) Remove dependency on ax-12 2047. (Revised by Wolf Lammen, 19-Mar-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hbaevg 1984* | Generalization of hbaev 1985, proved at no extra cost. Instance of aev2 1986. (Contributed by Wolf Lammen, 22-Mar-2021.) (Revised by BJ, 29-Mar-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hbaev 1985* | Version of hbae 2315 with a DV condition, requiring fewer axioms. Instance of hbaevg 1984 and aev2 1986. (Contributed by Wolf Lammen, 22-Mar-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | aev2 1986* |
A version of aev 1983 with two universal quantifiers in the
consequent, and
a generalization of hbaevg 1984. One can prove similar statements with
arbitrary numbers of universal quantifiers in the consequent (the series
begins with aeveq 1982, aev 1983, aev2 1986).
Using aev 1983 and alrimiv 1855 (as in aev2ALT 1987), one can actually prove
(with no more axioms) any scheme of the form (Contributed by BJ, 29-Mar-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | aev2ALT 1987* | Alternate proof of aev2 1986, bypassing hbaevg 1984. (Contributed by BJ, 23-Mar-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axc11nlemOLD2 1988* | Lemma for axc11n 2307. Change bound variable in an equality. Obsolete as of 29-Mar-2021. Use aev 1983 instead. (Contributed by NM, 8-Jul-2016.) (Proof shortened by Wolf Lammen, 17-Feb-2018.) Restructure to ease either bundling, or reducing dependencies on axioms. (Revised by Wolf Lammen, 30-Nov-2019.) Remove dependency on ax-12 2047. (Revised by Wolf Lammen, 14-Mar-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | aevlemOLD 1989* | Old proof of aevlem 1981. Obsolete as of 29-Mar-2021. (Contributed by NM, 22-Jul-2015.) (Proof shortened by Wolf Lammen, 17-Feb-2018.) Remove dependency on ax-13 2246, along an idea of BJ. (Revised by Wolf Lammen, 30-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Syntax | wcel 1990 |
Extend wff definition to include the membership connective between
classes.
For a general discussion of the theory of classes, see mmset.html#class.
(The purpose of introducing |
![]() ![]() ![]() ![]() | ||
Theorem | wel 1991 |
Extend wff definition to include atomic formulas with the epsilon
(membership) predicate. This is read "![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]()
This syntactic construction introduces a binary non-logical predicate
symbol
(Instead of introducing wel 1991 as an axiomatic statement, as was done in an
older version of this database, we introduce it by "proving" a
special
case of set theory's more general wcel 1990. This lets us avoid overloading
the |
![]() ![]() ![]() ![]() | ||
Axiom | ax-8 1992 |
Axiom of Left Equality for Binary Predicate. One of the equality and
substitution axioms for a non-logical predicate in our predicate calculus
with equality. It substitutes equal variables into the left-hand side of
an arbitrary binary predicate ![]()
We prove in ax8 1996 that this axiom can be recovered from its
weakened
version ax8v 1993 where |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ax8v 1993* |
Weakened version of ax-8 1992, with a dv condition on ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ax8v1 1994* |
First of two weakened versions of ax8v 1993, with an extra dv condition on
![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ax8v2 1995* |
Second of two weakened versions of ax8v 1993, with an extra dv condition
on ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ax8 1996 | Proof of ax-8 1992 from ax8v1 1994 and ax8v2 1995, proving sufficiency of the conjunction of the latter two weakened versions of ax8v 1993, which is itself a weakened version of ax-8 1992. (Contributed by BJ, 7-Dec-2020.) (Proof shortened by Wolf Lammen, 11-Apr-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | elequ1 1997 | An identity law for the non-logical predicate. (Contributed by NM, 30-Jun-1993.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | cleljust 1998* |
When the class variables in definition df-clel 2618 are replaced with
setvar variables, this theorem of predicate calculus is the result.
This theorem provides part of the justification for the consistency of
that definition, which "overloads" the setvar variables in wel 1991
with
the class variables in wcel 1990. (Contributed by NM, 28-Jan-2004.)
Revised to use equsexvw 1932 in order to remove dependencies on ax-10 2019,
ax-12 2047, ax-13 2246. Note that there is no DV condition
on ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-9 1999 |
Axiom of Right Equality for Binary Predicate. One of the equality and
substitution axioms for a non-logical predicate in our predicate calculus
with equality. It substitutes equal variables into the right-hand side of
an arbitrary binary predicate ![]()
We prove in ax9 2003 that this axiom can be recovered from its
weakened
version ax9v 2000 where |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ax9v 2000* |
Weakened version of ax-9 1999, with a dv condition on ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |