MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc16gb Structured version   Visualization version   Unicode version

Theorem axc16gb 2136
Description: Biconditional strengthening of axc16g 2134. (Contributed by NM, 15-May-1993.)
Assertion
Ref Expression
axc16gb  |-  ( A. x  x  =  y  ->  ( ph  <->  A. z ph ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem axc16gb
StepHypRef Expression
1 axc16g 2134 . 2  |-  ( A. x  x  =  y  ->  ( ph  ->  A. z ph ) )
2 sp 2053 . 2  |-  ( A. z ph  ->  ph )
31, 2impbid1 215 1  |-  ( A. x  x  =  y  ->  ( ph  <->  A. z ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705
This theorem is referenced by:  sbal  2462
  Copyright terms: Public domain W3C validator