| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbal | Structured version Visualization version Unicode version | ||
| Description: Move universal quantifier in and out of substitution. (Contributed by NM, 16-May-1993.) (Proof shortened by Wolf Lammen, 29-Sep-2018.) |
| Ref | Expression |
|---|---|
| sbal |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfae 2316 |
. . . 4
| |
| 2 | axc16gb 2136 |
. . . 4
| |
| 3 | 1, 2 | sbbid 2403 |
. . 3
|
| 4 | axc16gb 2136 |
. . 3
| |
| 5 | 3, 4 | bitr3d 270 |
. 2
|
| 6 | sbal1 2460 |
. 2
| |
| 7 | 5, 6 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: sbex 2463 sbalv 2464 sbcal 3485 ax11-pm2 32823 bj-sbnf 32828 sbcalgOLD 38752 |
| Copyright terms: Public domain | W3C validator |