MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axnul Structured version   Visualization version   Unicode version

Theorem axnul 4788
Description: The Null Set Axiom of ZF set theory: there exists a set with no elements. Axiom of Empty Set of [Enderton] p. 18. In some textbooks, this is presented as a separate axiom; here we show it can be derived from Separation ax-sep 4781. This version of the Null Set Axiom tells us that at least one empty set exists, but does not tell us that it is unique - we need the Axiom of Extensionality to do that (see zfnuleu 4786).

This proof, suggested by Jeff Hoffman, uses only ax-4 1737 and ax-gen 1722 from predicate calculus, which are valid in "free logic" i.e. logic holding in an empty domain (see Axiom A5 and Rule R2 of [LeBlanc] p. 277). Thus, our ax-sep 4781 implies the existence of at least one set. Note that Kunen's version of ax-sep 4781 (Axiom 3 of [Kunen] p. 11) does not imply the existence of a set because his is universally closed i.e. prefixed with universal quantifiers to eliminate all free variables. His existence is provided by a separate axiom stating  E. x x  =  x (Axiom 0 of [Kunen] p. 10).

See axnulALT 4787 for a proof directly from ax-rep 4771.

This theorem should not be referenced by any proof. Instead, use ax-nul 4789 below so that the uses of the Null Set Axiom can be more easily identified. (Contributed by Jeff Hoffman, 3-Feb-2008.) (Revised by NM, 4-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.)

Assertion
Ref Expression
axnul  |-  E. x A. y  -.  y  e.  x
Distinct variable group:    x, y

Proof of Theorem axnul
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ax-sep 4781 . 2  |-  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\ F.  )
)
2 fal 1490 . . . . 5  |-  -. F.
32intnan 960 . . . 4  |-  -.  (
y  e.  z  /\ F.  )
4 id 22 . . . 4  |-  ( ( y  e.  x  <->  ( y  e.  z  /\ F.  )
)  ->  ( y  e.  x  <->  ( y  e.  z  /\ F.  )
) )
53, 4mtbiri 317 . . 3  |-  ( ( y  e.  x  <->  ( y  e.  z  /\ F.  )
)  ->  -.  y  e.  x )
65alimi 1739 . 2  |-  ( A. y ( y  e.  x  <->  ( y  e.  z  /\ F.  )
)  ->  A. y  -.  y  e.  x
)
71, 6eximii 1764 1  |-  E. x A. y  -.  y  e.  x
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    /\ wa 384   A.wal 1481   F. wfal 1488   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-an 386  df-tru 1486  df-fal 1489  df-ex 1705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator