Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-alrim2 Structured version   Visualization version   Unicode version

Theorem bj-alrim2 32684
Description: Uncurried (imported) form of bj-alrim 32683. (Contributed by BJ, 2-May-2019.)
Assertion
Ref Expression
bj-alrim2  |-  ( ( F/ x ph  /\  A. x ( ph  ->  ps ) )  ->  ( ph  ->  A. x ps )
)

Proof of Theorem bj-alrim2
StepHypRef Expression
1 bj-alrim 32683 . 2  |-  ( F/ x ph  ->  ( A. x ( ph  ->  ps )  ->  ( ph  ->  A. x ps )
) )
21imp 445 1  |-  ( ( F/ x ph  /\  A. x ( ph  ->  ps ) )  ->  ( ph  ->  A. x ps )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481   F/wnf 1708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-nf 1710
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator