Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ceqsalt0 Structured version   Visualization version   Unicode version

Theorem bj-ceqsalt0 32873
Description: The FOL content of ceqsalt 3228. Lemma for bj-ceqsalt 32875 and bj-ceqsaltv 32876. (Contributed by BJ, 26-Sep-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ceqsalt0  |-  ( ( F/ x ps  /\  A. x ( th  ->  (
ph 
<->  ps ) )  /\  E. x th )  -> 
( A. x ( th  ->  ph )  <->  ps )
)

Proof of Theorem bj-ceqsalt0
StepHypRef Expression
1 simp3 1063 . . 3  |-  ( ( F/ x ps  /\  A. x ( th  ->  (
ph 
<->  ps ) )  /\  E. x th )  ->  E. x th )
2 biimp 205 . . . . . . 7  |-  ( (
ph 
<->  ps )  ->  ( ph  ->  ps ) )
32imim3i 64 . . . . . 6  |-  ( ( th  ->  ( ph  <->  ps ) )  ->  (
( th  ->  ph )  ->  ( th  ->  ps ) ) )
43al2imi 1743 . . . . 5  |-  ( A. x ( th  ->  (
ph 
<->  ps ) )  -> 
( A. x ( th  ->  ph )  ->  A. x ( th  ->  ps ) ) )
543ad2ant2 1083 . . . 4  |-  ( ( F/ x ps  /\  A. x ( th  ->  (
ph 
<->  ps ) )  /\  E. x th )  -> 
( A. x ( th  ->  ph )  ->  A. x ( th  ->  ps ) ) )
6 19.23t 2079 . . . . 5  |-  ( F/ x ps  ->  ( A. x ( th  ->  ps )  <->  ( E. x th  ->  ps ) ) )
763ad2ant1 1082 . . . 4  |-  ( ( F/ x ps  /\  A. x ( th  ->  (
ph 
<->  ps ) )  /\  E. x th )  -> 
( A. x ( th  ->  ps )  <->  ( E. x th  ->  ps ) ) )
85, 7sylibd 229 . . 3  |-  ( ( F/ x ps  /\  A. x ( th  ->  (
ph 
<->  ps ) )  /\  E. x th )  -> 
( A. x ( th  ->  ph )  -> 
( E. x th  ->  ps ) ) )
91, 8mpid 44 . 2  |-  ( ( F/ x ps  /\  A. x ( th  ->  (
ph 
<->  ps ) )  /\  E. x th )  -> 
( A. x ( th  ->  ph )  ->  ps ) )
10 biimpr 210 . . . . . . 7  |-  ( (
ph 
<->  ps )  ->  ( ps  ->  ph ) )
1110imim2i 16 . . . . . 6  |-  ( ( th  ->  ( ph  <->  ps ) )  ->  ( th  ->  ( ps  ->  ph ) ) )
1211com23 86 . . . . 5  |-  ( ( th  ->  ( ph  <->  ps ) )  ->  ( ps  ->  ( th  ->  ph ) ) )
1312alimi 1739 . . . 4  |-  ( A. x ( th  ->  (
ph 
<->  ps ) )  ->  A. x ( ps  ->  ( th  ->  ph ) ) )
14133ad2ant2 1083 . . 3  |-  ( ( F/ x ps  /\  A. x ( th  ->  (
ph 
<->  ps ) )  /\  E. x th )  ->  A. x ( ps  ->  ( th  ->  ph ) ) )
15 19.21t 2073 . . . 4  |-  ( F/ x ps  ->  ( A. x ( ps  ->  ( th  ->  ph ) )  <-> 
( ps  ->  A. x
( th  ->  ph )
) ) )
16153ad2ant1 1082 . . 3  |-  ( ( F/ x ps  /\  A. x ( th  ->  (
ph 
<->  ps ) )  /\  E. x th )  -> 
( A. x ( ps  ->  ( th  ->  ph ) )  <->  ( ps  ->  A. x ( th 
->  ph ) ) ) )
1714, 16mpbid 222 . 2  |-  ( ( F/ x ps  /\  A. x ( th  ->  (
ph 
<->  ps ) )  /\  E. x th )  -> 
( ps  ->  A. x
( th  ->  ph )
) )
189, 17impbid 202 1  |-  ( ( F/ x ps  /\  A. x ( th  ->  (
ph 
<->  ps ) )  /\  E. x th )  -> 
( A. x ( th  ->  ph )  <->  ps )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037   A.wal 1481   E.wex 1704   F/wnf 1708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-ex 1705  df-nf 1710
This theorem is referenced by:  bj-ceqsalt  32875  bj-ceqsaltv  32876  bj-ceqsalg0  32877
  Copyright terms: Public domain W3C validator