Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-cleljustab Structured version   Visualization version   Unicode version

Theorem bj-cleljustab 32847
Description: An instance of df-clel 2618 where the LHS (the definiendum) has the form "setvar  e. class abstraction". The straightforward yet important fact that this statement can be proved from FOL= and df-clab 2609 (hence without df-clel 2618 or df-cleq 2615) was stressed by Mario Carneiro. The instance of df-clel 2618 where the LHS has the form "setvar  e. setvar" is proved as cleljust 1998, from FOL= and ax-8 1992. Note: when df-ssb 32620 is the official definition for substitution, one can use bj-ssbequ instead of sbequ 2376 to prove bj-cleljustab 32847 from Tarski's FOL= with df-clab 2609. (Contributed by BJ, 8-Nov-2021.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-cleljustab  |-  ( x  e.  { y  | 
ph }  <->  E. z
( z  =  x  /\  z  e.  {
y  |  ph }
) )
Distinct variable groups:    x, z    y, z    ph, z
Allowed substitution hints:    ph( x, y)

Proof of Theorem bj-cleljustab
StepHypRef Expression
1 df-clab 2609 . 2  |-  ( x  e.  { y  | 
ph }  <->  [ x  /  y ] ph )
2 ax6ev 1890 . . . 4  |-  E. z 
z  =  x
32biantrur 527 . . 3  |-  ( [ x  /  y ]
ph 
<->  ( E. z  z  =  x  /\  [
x  /  y ]
ph ) )
4 19.41v 1914 . . . 4  |-  ( E. z ( z  =  x  /\  [ x  /  y ] ph ) 
<->  ( E. z  z  =  x  /\  [
x  /  y ]
ph ) )
54bicomi 214 . . 3  |-  ( ( E. z  z  =  x  /\  [ x  /  y ] ph ) 
<->  E. z ( z  =  x  /\  [
x  /  y ]
ph ) )
6 sbequ 2376 . . . . . 6  |-  ( x  =  z  ->  ( [ x  /  y ] ph  <->  [ z  /  y ] ph ) )
76equcoms 1947 . . . . 5  |-  ( z  =  x  ->  ( [ x  /  y ] ph  <->  [ z  /  y ] ph ) )
87pm5.32i 669 . . . 4  |-  ( ( z  =  x  /\  [ x  /  y ]
ph )  <->  ( z  =  x  /\  [ z  /  y ] ph ) )
98exbii 1774 . . 3  |-  ( E. z ( z  =  x  /\  [ x  /  y ] ph ) 
<->  E. z ( z  =  x  /\  [
z  /  y ]
ph ) )
103, 5, 93bitri 286 . 2  |-  ( [ x  /  y ]
ph 
<->  E. z ( z  =  x  /\  [
z  /  y ]
ph ) )
11 df-clab 2609 . . . . 5  |-  ( z  e.  { y  | 
ph }  <->  [ z  /  y ] ph )
1211bicomi 214 . . . 4  |-  ( [ z  /  y ]
ph 
<->  z  e.  { y  |  ph } )
1312anbi2i 730 . . 3  |-  ( ( z  =  x  /\  [ z  /  y ]
ph )  <->  ( z  =  x  /\  z  e.  { y  |  ph } ) )
1413exbii 1774 . 2  |-  ( E. z ( z  =  x  /\  [ z  /  y ] ph ) 
<->  E. z ( z  =  x  /\  z  e.  { y  |  ph } ) )
151, 10, 143bitri 286 1  |-  ( x  e.  { y  | 
ph }  <->  E. z
( z  =  x  /\  z  e.  {
y  |  ph }
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384   E.wex 1704   [wsb 1880    e. wcel 1990   {cab 2608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator