Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elisset Structured version   Visualization version   Unicode version

Theorem bj-elisset 32862
Description: Remove from elisset 3215 dependency on ax-ext 2602 (and on df-cleq 2615 and df-v 3202). This proof uses only df-clab 2609 and df-clel 2618 on top of first-order logic. It only requires ax-1--7 and sp 2053. Use bj-elissetv 32861 instead when sufficient (in particular when  V is substituted for  _V). (Contributed by BJ, 29-Apr-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-elisset  |-  ( A  e.  V  ->  E. x  x  =  A )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem bj-elisset
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 bj-elissetv 32861 . 2  |-  ( A  e.  V  ->  E. y 
y  =  A )
2 bj-denotes 32858 . 2  |-  ( E. y  y  =  A  <->  E. x  x  =  A )
31, 2sylib 208 1  |-  ( A  e.  V  ->  E. x  x  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483   E.wex 1704    e. wcel 1990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-sb 1881  df-clab 2609  df-clel 2618
This theorem is referenced by:  bj-isseti  32864  bj-ceqsalt  32875  bj-ceqsalg  32878  bj-spcimdv  32884  bj-vtoclg1f  32911
  Copyright terms: Public domain W3C validator