Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-hbs1 Structured version   Visualization version   Unicode version

Theorem bj-hbs1 32758
Description: Version of hbsb2 2359 with a dv condition, which does not require ax-13 2246, and removal of ax-13 2246 from hbs1 2436. (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-hbs1  |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem bj-hbs1
StepHypRef Expression
1 bj-sb4v 32757 . 2  |-  ( [ y  /  x ] ph  ->  A. x ( x  =  y  ->  ph )
)
2 bj-sb2v 32753 . . 3  |-  ( A. x ( x  =  y  ->  ph )  ->  [ y  /  x ] ph )
32axc4i 2131 . 2  |-  ( A. x ( x  =  y  ->  ph )  ->  A. x [ y  /  x ] ph )
41, 3syl 17 1  |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481   [wsb 1880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710  df-sb 1881
This theorem is referenced by:  bj-nfs1v  32759  bj-hbab1  32771
  Copyright terms: Public domain W3C validator