MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbsb2 Structured version   Visualization version   Unicode version

Theorem hbsb2 2359
Description: Bound-variable hypothesis builder for substitution. (Contributed by NM, 14-May-1993.)
Assertion
Ref Expression
hbsb2  |-  ( -. 
A. x  x  =  y  ->  ( [
y  /  x ] ph  ->  A. x [ y  /  x ] ph ) )

Proof of Theorem hbsb2
StepHypRef Expression
1 sb4 2356 . 2  |-  ( -. 
A. x  x  =  y  ->  ( [
y  /  x ] ph  ->  A. x ( x  =  y  ->  ph )
) )
2 sb2 2352 . . 3  |-  ( A. x ( x  =  y  ->  ph )  ->  [ y  /  x ] ph )
32axc4i 2131 . 2  |-  ( A. x ( x  =  y  ->  ph )  ->  A. x [ y  /  x ] ph )
41, 3syl6 35 1  |-  ( -. 
A. x  x  =  y  ->  ( [
y  /  x ] ph  ->  A. x [ y  /  x ] ph ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1481   [wsb 1880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710  df-sb 1881
This theorem is referenced by:  nfsb2  2360  hbs1  2436
  Copyright terms: Public domain W3C validator