Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-modal4e Structured version   Visualization version   Unicode version

Theorem bj-modal4e 32705
Description: Dual statement of hba1 2151 (which is modal-4 ). (Contributed by BJ, 21-Dec-2020.)
Assertion
Ref Expression
bj-modal4e  |-  ( E. x E. x ph  ->  E. x ph )

Proof of Theorem bj-modal4e
StepHypRef Expression
1 hba1 2151 . . 3  |-  ( A. x  -.  ph  ->  A. x A. x  -.  ph )
2 alnex 1706 . . 3  |-  ( A. x  -.  ph  <->  -.  E. x ph )
3 2exnaln 1756 . . . 4  |-  ( E. x E. x ph  <->  -. 
A. x A. x  -.  ph )
43con2bii 347 . . 3  |-  ( A. x A. x  -.  ph  <->  -. 
E. x E. x ph )
51, 2, 43imtr3i 280 . 2  |-  ( -. 
E. x ph  ->  -. 
E. x E. x ph )
65con4i 113 1  |-  ( E. x E. x ph  ->  E. x ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1481   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-or 385  df-ex 1705  df-nf 1710
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator