Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-eeanvw Structured version   Visualization version   Unicode version

Theorem bj-eeanvw 32704
Description: Version of eeanv 2182 with a DV condition on  x ,  y not requiring ax-11 2034. (The same can be done with eeeanv 2183 and ee4anv 2184.) (Contributed by BJ, 29-Sep-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-eeanvw  |-  ( E. x E. y (
ph  /\  ps )  <->  ( E. x ph  /\  E. y ps ) )
Distinct variable groups:    ph, y    ps, x    x, y
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem bj-eeanvw
StepHypRef Expression
1 19.42v 1918 . . 3  |-  ( E. y ( ph  /\  ps )  <->  ( ph  /\  E. y ps ) )
21exbii 1774 . 2  |-  ( E. x E. y (
ph  /\  ps )  <->  E. x ( ph  /\  E. y ps ) )
3 19.41v 1914 . 2  |-  ( E. x ( ph  /\  E. y ps )  <->  ( E. x ph  /\  E. y ps ) )
42, 3bitri 264 1  |-  ( E. x E. y (
ph  /\  ps )  <->  ( E. x ph  /\  E. y ps ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator