Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rabtr Structured version   Visualization version   Unicode version

Theorem bj-rabtr 32926
Description: Restricted class abstraction with true formula. (Contributed by BJ, 22-Apr-2019.)
Assertion
Ref Expression
bj-rabtr  |-  { x  e.  A  | T.  }  =  A
Distinct variable group:    x, A

Proof of Theorem bj-rabtr
StepHypRef Expression
1 ssrab2 3687 . 2  |-  { x  e.  A  | T.  }  C_  A
2 ssid 3624 . . 3  |-  A  C_  A
3 tru 1487 . . . 4  |- T.
43rgenw 2924 . . 3  |-  A. x  e.  A T.
5 ssrab 3680 . . 3  |-  ( A 
C_  { x  e.  A  | T.  }  <->  ( A  C_  A  /\  A. x  e.  A T.  ) )
62, 4, 5mpbir2an 955 . 2  |-  A  C_  { x  e.  A  | T.  }
71, 6eqssi 3619 1  |-  { x  e.  A  | T.  }  =  A
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483   T. wtru 1484   A.wral 2912   {crab 2916    C_ wss 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-in 3581  df-ss 3588
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator