MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-in Structured version   Visualization version   Unicode version

Definition df-in 3581
Description: Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example,  ( { 1 ,  3 }  i^i  { 1 ,  8 } )  =  { 1 } (ex-in 27282). Contrast this operation with union  ( A  u.  B
) (df-un 3579) and difference  ( A  \  B ) (df-dif 3577). For alternate definitions in terms of class difference, requiring no dummy variables, see dfin2 3860 and dfin4 3867. For intersection defined in terms of union, see dfin3 3866. (Contributed by NM, 29-Apr-1994.)
Assertion
Ref Expression
df-in  |-  ( A  i^i  B )  =  { x  |  ( x  e.  A  /\  x  e.  B ) }
Distinct variable groups:    x, A    x, B

Detailed syntax breakdown of Definition df-in
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
31, 2cin 3573 . 2  class  ( A  i^i  B )
4 vx . . . . . 6  setvar  x
54cv 1482 . . . . 5  class  x
65, 1wcel 1990 . . . 4  wff  x  e.  A
75, 2wcel 1990 . . . 4  wff  x  e.  B
86, 7wa 384 . . 3  wff  ( x  e.  A  /\  x  e.  B )
98, 4cab 2608 . 2  class  { x  |  ( x  e.  A  /\  x  e.  B ) }
103, 9wceq 1483 1  wff  ( A  i^i  B )  =  { x  |  ( x  e.  A  /\  x  e.  B ) }
Colors of variables: wff setvar class
This definition is referenced by:  dfin5  3582  dfss2  3591  elin  3796  disj  4017  iinxprg  4601  disjex  29405  disjexc  29406  eulerpartlemt  30433  iocinico  37797  csbingVD  39120
  Copyright terms: Public domain W3C validator