Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ru Structured version   Visualization version   Unicode version

Theorem bj-ru 32934
Description: Remove dependency on ax-13 2246 (and df-v 3202) from Russell's paradox ru 3434 expressed with primitive symbols and with a class variable  V (note that axsep2 4782 does require ax-8 1992 and ax-9 1999 since it requires df-clel 2618 and df-cleq 2615--- see bj-df-clel 32888 and bj-df-cleq 32893). Note the more economical use of bj-elissetv 32861 instead of isset 3207 to avoid use of df-v 3202. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ru  |-  -.  {
x  |  -.  x  e.  x }  e.  V

Proof of Theorem bj-ru
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 bj-ru1 32933 . 2  |-  -.  E. y  y  =  {
x  |  -.  x  e.  x }
2 bj-elissetv 32861 . 2  |-  ( { x  |  -.  x  e.  x }  e.  V  ->  E. y  y  =  { x  |  -.  x  e.  x }
)
31, 2mto 188 1  |-  -.  {
x  |  -.  x  e.  x }  e.  V
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator