MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axsep2 Structured version   Visualization version   Unicode version

Theorem axsep2 4782
Description: A less restrictive version of the Separation Scheme axsep 4780, where variables  x and  z can both appear free in the wff  ph, which can therefore be thought of as  ph ( x ,  z ). This version was derived from the more restrictive ax-sep 4781 with no additional set theory axioms. (Contributed by NM, 10-Dec-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
Assertion
Ref Expression
axsep2  |-  E. y A. x ( x  e.  y  <->  ( x  e.  z  /\  ph )
)
Distinct variable groups:    x, y,
z    ph, y
Allowed substitution hints:    ph( x, z)

Proof of Theorem axsep2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 elequ2 2004 . . . . . . 7  |-  ( w  =  z  ->  (
x  e.  w  <->  x  e.  z ) )
21anbi1d 741 . . . . . 6  |-  ( w  =  z  ->  (
( x  e.  w  /\  ( x  e.  z  /\  ph ) )  <-> 
( x  e.  z  /\  ( x  e.  z  /\  ph )
) ) )
3 anabs5 851 . . . . . 6  |-  ( ( x  e.  z  /\  ( x  e.  z  /\  ph ) )  <->  ( x  e.  z  /\  ph )
)
42, 3syl6bb 276 . . . . 5  |-  ( w  =  z  ->  (
( x  e.  w  /\  ( x  e.  z  /\  ph ) )  <-> 
( x  e.  z  /\  ph ) ) )
54bibi2d 332 . . . 4  |-  ( w  =  z  ->  (
( x  e.  y  <-> 
( x  e.  w  /\  ( x  e.  z  /\  ph ) ) )  <->  ( x  e.  y  <->  ( x  e.  z  /\  ph )
) ) )
65albidv 1849 . . 3  |-  ( w  =  z  ->  ( A. x ( x  e.  y  <->  ( x  e.  w  /\  ( x  e.  z  /\  ph ) ) )  <->  A. x
( x  e.  y  <-> 
( x  e.  z  /\  ph ) ) ) )
76exbidv 1850 . 2  |-  ( w  =  z  ->  ( E. y A. x ( x  e.  y  <->  ( x  e.  w  /\  (
x  e.  z  /\  ph ) ) )  <->  E. y A. x ( x  e.  y  <->  ( x  e.  z  /\  ph )
) ) )
8 ax-sep 4781 . 2  |-  E. y A. x ( x  e.  y  <->  ( x  e.  w  /\  ( x  e.  z  /\  ph ) ) )
97, 8chvarv 2263 1  |-  E. y A. x ( x  e.  y  <->  ( x  e.  z  /\  ph )
)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384   A.wal 1481   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-12 2047  ax-13 2246  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator