Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-spimvwt Structured version   Visualization version   Unicode version

Theorem bj-spimvwt 32656
Description: Closed form of spimvw 1927. See also spimt 2253. (Contributed by BJ, 8-Nov-2021.)
Assertion
Ref Expression
bj-spimvwt  |-  ( A. x ( x  =  y  ->  ( ph  ->  ps ) )  -> 
( A. x ph  ->  ps ) )
Distinct variable groups:    x, y    ps, x
Allowed substitution hints:    ph( x, y)    ps( y)

Proof of Theorem bj-spimvwt
StepHypRef Expression
1 bj-alequexv 32655 . 2  |-  ( A. x ( x  =  y  ->  ( ph  ->  ps ) )  ->  E. x ( ph  ->  ps ) )
2 19.36v 1904 . 2  |-  ( E. x ( ph  ->  ps )  <->  ( A. x ph  ->  ps ) )
31, 2sylib 208 1  |-  ( A. x ( x  =  y  ->  ( ph  ->  ps ) )  -> 
( A. x ph  ->  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888
This theorem depends on definitions:  df-bi 197  df-ex 1705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator