Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ssbjust Structured version   Visualization version   Unicode version

Theorem bj-ssbjust 32618
Description: Justification theorem for df-ssb 32620 from Tarski's FOL. (Contributed by BJ, 9-Nov-2021.)
Assertion
Ref Expression
bj-ssbjust  |-  ( A. y ( y  =  t  ->  A. x
( x  =  y  ->  ph ) )  <->  A. z
( z  =  t  ->  A. x ( x  =  z  ->  ph )
) )
Distinct variable groups:    x, y,
z    y, t, z    ph, y,
z
Allowed substitution hints:    ph( x, t)

Proof of Theorem bj-ssbjust
StepHypRef Expression
1 equequ1 1952 . . 3  |-  ( y  =  z  ->  (
y  =  t  <->  z  =  t ) )
2 equequ2 1953 . . . . 5  |-  ( y  =  z  ->  (
x  =  y  <->  x  =  z ) )
32imbi1d 331 . . . 4  |-  ( y  =  z  ->  (
( x  =  y  ->  ph )  <->  ( x  =  z  ->  ph )
) )
43albidv 1849 . . 3  |-  ( y  =  z  ->  ( A. x ( x  =  y  ->  ph )  <->  A. x
( x  =  z  ->  ph ) ) )
51, 4imbi12d 334 . 2  |-  ( y  =  z  ->  (
( y  =  t  ->  A. x ( x  =  y  ->  ph )
)  <->  ( z  =  t  ->  A. x
( x  =  z  ->  ph ) ) ) )
65cbvalvw 1969 1  |-  ( A. y ( y  =  t  ->  A. x
( x  =  y  ->  ph ) )  <->  A. z
( z  =  t  ->  A. x ( x  =  z  ->  ph )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator