Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-vtoclf Structured version   Visualization version   Unicode version

Theorem bj-vtoclf 32908
Description: Remove dependency on ax-ext 2602, df-clab 2609 and df-cleq 2615 (and df-sb 1881 and df-v 3202) from vtoclf 3258. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-vtoclf.nf  |-  F/ x ps
bj-vtoclf.s  |-  A  e.  V
bj-vtoclf.maj  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
bj-vtoclf.min  |-  ph
Assertion
Ref Expression
bj-vtoclf  |-  ps
Distinct variable groups:    x, A    x, V
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem bj-vtoclf
StepHypRef Expression
1 bj-vtoclf.nf . . 3  |-  F/ x ps
2 bj-vtoclf.s . . . . 5  |-  A  e.  V
32bj-issetiv 32863 . . . 4  |-  E. x  x  =  A
4 bj-vtoclf.maj . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
54biimpd 219 . . . 4  |-  ( x  =  A  ->  ( ph  ->  ps ) )
63, 5eximii 1764 . . 3  |-  E. x
( ph  ->  ps )
71, 619.36i 2099 . 2  |-  ( A. x ph  ->  ps )
8 bj-vtoclf.min . 2  |-  ph
97, 8mpg 1724 1  |-  ps
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483   F/wnf 1708    e. wcel 1990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-nf 1710  df-clel 2618
This theorem is referenced by:  bj-vtocl  32909
  Copyright terms: Public domain W3C validator