| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclf | Structured version Visualization version Unicode version | ||
| Description: Implicit substitution of a class for a setvar variable. This is a generalization of chvar 2262. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| vtoclf.1 |
|
| vtoclf.2 |
|
| vtoclf.3 |
|
| vtoclf.4 |
|
| Ref | Expression |
|---|---|
| vtoclf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtoclf.1 |
. . 3
| |
| 2 | vtoclf.2 |
. . . . 5
| |
| 3 | 2 | isseti 3209 |
. . . 4
|
| 4 | vtoclf.3 |
. . . . 5
| |
| 5 | 4 | biimpd 219 |
. . . 4
|
| 6 | 3, 5 | eximii 1764 |
. . 3
|
| 7 | 1, 6 | 19.36i 2099 |
. 2
|
| 8 | vtoclf.4 |
. 2
| |
| 9 | 7, 8 | mpg 1724 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-12 2047 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 |
| This theorem is referenced by: vtoclALT 3260 summolem2a 14446 prodmolem2a 14664 poimirlem24 33433 poimirlem28 33437 monotuz 37506 oddcomabszz 37509 binomcxplemnotnn0 38555 limclner 39883 climinf2mpt 39946 climinfmpt 39947 dvnmptdivc 40153 dvnmul 40158 salpreimagtge 40934 salpreimaltle 40935 |
| Copyright terms: Public domain | W3C validator |