Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1445 Structured version   Visualization version   Unicode version

Theorem bnj1445 31112
Description: Technical lemma for bnj60 31130. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1445.1  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
bnj1445.2  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
bnj1445.3  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
bnj1445.4  |-  ( ta  <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
bnj1445.5  |-  D  =  { x  e.  A  |  -.  E. f ta }
bnj1445.6  |-  ( ps  <->  ( R  FrSe  A  /\  D  =/=  (/) ) )
bnj1445.7  |-  ( ch  <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )
bnj1445.8  |-  ( ta'  <->  [. y  /  x ]. ta )
bnj1445.9  |-  H  =  { f  |  E. y  e.  pred  ( x ,  A ,  R
) ta' }
bnj1445.10  |-  P  = 
U. H
bnj1445.11  |-  Z  = 
<. x ,  ( P  |`  pred ( x ,  A ,  R ) ) >.
bnj1445.12  |-  Q  =  ( P  u.  { <. x ,  ( G `
 Z ) >. } )
bnj1445.13  |-  W  = 
<. z ,  ( Q  |`  pred ( z ,  A ,  R ) ) >.
bnj1445.14  |-  E  =  ( { x }  u.  trCl ( x ,  A ,  R ) )
bnj1445.15  |-  ( ch 
->  P  Fn  trCl (
x ,  A ,  R ) )
bnj1445.16  |-  ( ch 
->  Q  Fn  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
bnj1445.17  |-  ( th  <->  ( ch  /\  z  e.  E ) )
bnj1445.18  |-  ( et  <->  ( th  /\  z  e. 
{ x } ) )
bnj1445.19  |-  ( ze  <->  ( th  /\  z  e. 
trCl ( x ,  A ,  R ) ) )
bnj1445.20  |-  ( rh  <->  ( ze  /\  f  e.  H  /\  z  e. 
dom  f ) )
bnj1445.21  |-  ( si  <->  ( rh  /\  y  e. 
pred ( x ,  A ,  R )  /\  f  e.  C  /\  dom  f  =  ( { y }  u.  trCl ( y ,  A ,  R ) ) ) )
bnj1445.22  |-  ( ph  <->  ( si  /\  d  e.  B  /\  f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) )
bnj1445.23  |-  X  = 
<. z ,  ( f  |`  pred ( z ,  A ,  R ) ) >.
Assertion
Ref Expression
bnj1445  |-  ( si  ->  A. d si )
Distinct variable groups:    A, d, x    B, f    E, d    R, d, x    f, d, x    y, d, x   
z, d
Allowed substitution hints:    ph( x, y, z, f, d)    ps( x, y, z, f, d)    ch( x, y, z, f, d)    th( x, y, z, f, d)    ta( x, y, z, f, d)    et( x, y, z, f, d)    ze( x, y, z, f, d)    si( x, y, z, f, d)    rh( x, y, z, f, d)    A( y, z, f)    B( x, y, z, d)    C( x, y, z, f, d)    D( x, y, z, f, d)    P( x, y, z, f, d)    Q( x, y, z, f, d)    R( y, z, f)    E( x, y, z, f)    G( x, y, z, f, d)    H( x, y, z, f, d)    W( x, y, z, f, d)    X( x, y, z, f, d)    Y( x, y, z, f, d)    Z( x, y, z, f, d)    ta'( x, y, z, f, d)

Proof of Theorem bnj1445
StepHypRef Expression
1 bnj1445.21 . 2  |-  ( si  <->  ( rh  /\  y  e. 
pred ( x ,  A ,  R )  /\  f  e.  C  /\  dom  f  =  ( { y }  u.  trCl ( y ,  A ,  R ) ) ) )
2 bnj1445.20 . . . . 5  |-  ( rh  <->  ( ze  /\  f  e.  H  /\  z  e. 
dom  f ) )
3 bnj1445.19 . . . . . . 7  |-  ( ze  <->  ( th  /\  z  e. 
trCl ( x ,  A ,  R ) ) )
4 bnj1445.17 . . . . . . . . 9  |-  ( th  <->  ( ch  /\  z  e.  E ) )
5 bnj1445.7 . . . . . . . . . . . . 13  |-  ( ch  <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )
6 bnj1445.6 . . . . . . . . . . . . . . 15  |-  ( ps  <->  ( R  FrSe  A  /\  D  =/=  (/) ) )
7 nfv 1843 . . . . . . . . . . . . . . . 16  |-  F/ d  R  FrSe  A
8 bnj1445.5 . . . . . . . . . . . . . . . . . 18  |-  D  =  { x  e.  A  |  -.  E. f ta }
9 bnj1445.4 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ta  <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
10 bnj1445.3 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
11 nfre1 3005 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  F/ d E. d  e.  B  ( f  Fn  d  /\  A. x  e.  d  ( f `  x
)  =  ( G `
 Y ) )
1211nfab 2769 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  F/_ d { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
1310, 12nfcxfr 2762 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  F/_ d C
1413nfcri 2758 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/ d  f  e.  C
15 nfv 1843 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/ d dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) )
1614, 15nfan 1828 . . . . . . . . . . . . . . . . . . . . . 22  |-  F/ d ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
179, 16nfxfr 1779 . . . . . . . . . . . . . . . . . . . . 21  |-  F/ d ta
1817nfex 2154 . . . . . . . . . . . . . . . . . . . 20  |-  F/ d E. f ta
1918nfn 1784 . . . . . . . . . . . . . . . . . . 19  |-  F/ d  -.  E. f ta
20 nfcv 2764 . . . . . . . . . . . . . . . . . . 19  |-  F/_ d A
2119, 20nfrab 3123 . . . . . . . . . . . . . . . . . 18  |-  F/_ d { x  e.  A  |  -.  E. f ta }
228, 21nfcxfr 2762 . . . . . . . . . . . . . . . . 17  |-  F/_ d D
23 nfcv 2764 . . . . . . . . . . . . . . . . 17  |-  F/_ d (/)
2422, 23nfne 2894 . . . . . . . . . . . . . . . 16  |-  F/ d  D  =/=  (/)
257, 24nfan 1828 . . . . . . . . . . . . . . 15  |-  F/ d ( R  FrSe  A  /\  D  =/=  (/) )
266, 25nfxfr 1779 . . . . . . . . . . . . . 14  |-  F/ d ps
2722nfcri 2758 . . . . . . . . . . . . . 14  |-  F/ d  x  e.  D
28 nfv 1843 . . . . . . . . . . . . . . 15  |-  F/ d  -.  y R x
2922, 28nfral 2945 . . . . . . . . . . . . . 14  |-  F/ d A. y  e.  D  -.  y R x
3026, 27, 29nf3an 1831 . . . . . . . . . . . . 13  |-  F/ d ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x )
315, 30nfxfr 1779 . . . . . . . . . . . 12  |-  F/ d ch
3231nf5ri 2065 . . . . . . . . . . 11  |-  ( ch 
->  A. d ch )
3332bnj1351 30897 . . . . . . . . . 10  |-  ( ( ch  /\  z  e.  E )  ->  A. d
( ch  /\  z  e.  E ) )
3433nf5i 2024 . . . . . . . . 9  |-  F/ d ( ch  /\  z  e.  E )
354, 34nfxfr 1779 . . . . . . . 8  |-  F/ d th
36 nfv 1843 . . . . . . . 8  |-  F/ d  z  e.  trCl (
x ,  A ,  R )
3735, 36nfan 1828 . . . . . . 7  |-  F/ d ( th  /\  z  e.  trCl ( x ,  A ,  R ) )
383, 37nfxfr 1779 . . . . . 6  |-  F/ d ze
39 bnj1445.9 . . . . . . . 8  |-  H  =  { f  |  E. y  e.  pred  ( x ,  A ,  R
) ta' }
40 nfcv 2764 . . . . . . . . . 10  |-  F/_ d  pred ( x ,  A ,  R )
41 bnj1445.8 . . . . . . . . . . 11  |-  ( ta'  <->  [. y  /  x ]. ta )
42 nfcv 2764 . . . . . . . . . . . 12  |-  F/_ d
y
4342, 17nfsbc 3457 . . . . . . . . . . 11  |-  F/ d
[. y  /  x ]. ta
4441, 43nfxfr 1779 . . . . . . . . . 10  |-  F/ d ta'
4540, 44nfrex 3007 . . . . . . . . 9  |-  F/ d E. y  e.  pred  ( x ,  A ,  R ) ta'
4645nfab 2769 . . . . . . . 8  |-  F/_ d { f  |  E. y  e.  pred  ( x ,  A ,  R
) ta' }
4739, 46nfcxfr 2762 . . . . . . 7  |-  F/_ d H
4847nfcri 2758 . . . . . 6  |-  F/ d  f  e.  H
49 nfv 1843 . . . . . 6  |-  F/ d  z  e.  dom  f
5038, 48, 49nf3an 1831 . . . . 5  |-  F/ d ( ze  /\  f  e.  H  /\  z  e.  dom  f )
512, 50nfxfr 1779 . . . 4  |-  F/ d rh
5251nf5ri 2065 . . 3  |-  ( rh 
->  A. d rh )
53 ax-5 1839 . . 3  |-  ( y  e.  pred ( x ,  A ,  R )  ->  A. d  y  e. 
pred ( x ,  A ,  R ) )
5414nf5ri 2065 . . 3  |-  ( f  e.  C  ->  A. d 
f  e.  C )
55 ax-5 1839 . . 3  |-  ( dom  f  =  ( { y }  u.  trCl ( y ,  A ,  R ) )  ->  A. d dom  f  =  ( { y }  u.  trCl ( y ,  A ,  R ) ) )
5652, 53, 54, 55bnj982 30849 . 2  |-  ( ( rh  /\  y  e. 
pred ( x ,  A ,  R )  /\  f  e.  C  /\  dom  f  =  ( { y }  u.  trCl ( y ,  A ,  R ) ) )  ->  A. d ( rh 
/\  y  e.  pred ( x ,  A ,  R )  /\  f  e.  C  /\  dom  f  =  ( { y }  u.  trCl (
y ,  A ,  R ) ) ) )
571, 56hbxfrbi 1752 1  |-  ( si  ->  A. d si )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   [.wsbc 3435    u. cun 3572    C_ wss 3574   (/)c0 3915   {csn 4177   <.cop 4183   U.cuni 4436   class class class wbr 4653   dom cdm 5114    |` cres 5116    Fn wfn 5883   ` cfv 5888    /\ w-bnj17 30752    predc-bnj14 30754    FrSe w-bnj15 30758    trClc-bnj18 30760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-sbc 3436  df-bnj17 30753
This theorem is referenced by:  bnj1450  31118
  Copyright terms: Public domain W3C validator