Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj60 Structured version   Visualization version   Unicode version

Theorem bnj60 31130
Description: Well-founded recursion, part 1 of 3. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj60.1  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
bnj60.2  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
bnj60.3  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
bnj60.4  |-  F  = 
U. C
Assertion
Ref Expression
bnj60  |-  ( R 
FrSe  A  ->  F  Fn  A )
Distinct variable groups:    A, d,
f, x    B, f    G, d, f, x    R, d, f, x
Allowed substitution hints:    B( x, d)    C( x, f, d)    F( x, f, d)    Y( x, f, d)

Proof of Theorem bnj60
Dummy variables  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj60.1 . . . . 5  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
2 bnj60.2 . . . . 5  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
3 bnj60.3 . . . . 5  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
41, 2, 3bnj1497 31128 . . . 4  |-  A. g  e.  C  Fun  g
5 eqid 2622 . . . . . . . 8  |-  ( dom  g  i^i  dom  h
)  =  ( dom  g  i^i  dom  h
)
61, 2, 3, 5bnj1311 31092 . . . . . . 7  |-  ( ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C )  ->  ( g  |`  ( dom  g  i^i  dom  h
) )  =  ( h  |`  ( dom  g  i^i  dom  h )
) )
763expia 1267 . . . . . 6  |-  ( ( R  FrSe  A  /\  g  e.  C )  ->  ( h  e.  C  ->  ( g  |`  ( dom  g  i^i  dom  h
) )  =  ( h  |`  ( dom  g  i^i  dom  h )
) ) )
87ralrimiv 2965 . . . . 5  |-  ( ( R  FrSe  A  /\  g  e.  C )  ->  A. h  e.  C  ( g  |`  ( dom  g  i^i  dom  h
) )  =  ( h  |`  ( dom  g  i^i  dom  h )
) )
98ralrimiva 2966 . . . 4  |-  ( R 
FrSe  A  ->  A. g  e.  C  A. h  e.  C  ( g  |`  ( dom  g  i^i 
dom  h ) )  =  ( h  |`  ( dom  g  i^i  dom  h ) ) )
10 biid 251 . . . . 5  |-  ( A. g  e.  C  Fun  g 
<-> 
A. g  e.  C  Fun  g )
11 biid 251 . . . . 5  |-  ( ( A. g  e.  C  Fun  g  /\  A. g  e.  C  A. h  e.  C  ( g  |`  ( dom  g  i^i 
dom  h ) )  =  ( h  |`  ( dom  g  i^i  dom  h ) ) )  <-> 
( A. g  e.  C  Fun  g  /\  A. g  e.  C  A. h  e.  C  (
g  |`  ( dom  g  i^i  dom  h ) )  =  ( h  |`  ( dom  g  i^i  dom  h ) ) ) )
1210, 5, 11bnj1383 30902 . . . 4  |-  ( ( A. g  e.  C  Fun  g  /\  A. g  e.  C  A. h  e.  C  ( g  |`  ( dom  g  i^i 
dom  h ) )  =  ( h  |`  ( dom  g  i^i  dom  h ) ) )  ->  Fun  U. C )
134, 9, 12sylancr 695 . . 3  |-  ( R 
FrSe  A  ->  Fun  U. C )
14 bnj60.4 . . . 4  |-  F  = 
U. C
1514funeqi 5909 . . 3  |-  ( Fun 
F  <->  Fun  U. C )
1613, 15sylibr 224 . 2  |-  ( R 
FrSe  A  ->  Fun  F
)
171, 2, 3, 14bnj1498 31129 . 2  |-  ( R 
FrSe  A  ->  dom  F  =  A )
1816, 17bnj1422 30908 1  |-  ( R 
FrSe  A  ->  F  Fn  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   <.cop 4183   U.cuni 4436   dom cdm 5114    |` cres 5116   Fun wfun 5882    Fn wfn 5883   ` cfv 5888    predc-bnj14 30754    FrSe w-bnj15 30758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-bnj17 30753  df-bnj14 30755  df-bnj13 30757  df-bnj15 30759  df-bnj18 30761  df-bnj19 30763
This theorem is referenced by:  bnj1501  31135  bnj1523  31139
  Copyright terms: Public domain W3C validator