Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1454 Structured version   Visualization version   Unicode version

Theorem bnj1454 30912
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1454.1  |-  A  =  { x  |  ph }
Assertion
Ref Expression
bnj1454  |-  ( B  e.  _V  ->  ( B  e.  A  <->  [. B  /  x ]. ph ) )

Proof of Theorem bnj1454
StepHypRef Expression
1 df-sbc 3436 . . 3  |-  ( [. B  /  x ]. ph  <->  B  e.  { x  |  ph }
)
21a1i 11 . 2  |-  ( B  e.  _V  ->  ( [. B  /  x ]. ph  <->  B  e.  { x  |  ph } ) )
3 bnj1454.1 . . 3  |-  A  =  { x  |  ph }
43eleq2i 2693 . 2  |-  ( B  e.  A  <->  B  e.  { x  |  ph }
)
52, 4syl6rbbr 279 1  |-  ( B  e.  _V  ->  ( B  e.  A  <->  [. B  /  x ]. ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   {cab 2608   _Vcvv 3200   [.wsbc 3435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-cleq 2615  df-clel 2618  df-sbc 3436
This theorem is referenced by:  bnj1452  31120  bnj1463  31123
  Copyright terms: Public domain W3C validator