Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1463 Structured version   Visualization version   Unicode version

Theorem bnj1463 31123
Description: Technical lemma for bnj60 31130. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1463.1  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
bnj1463.2  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
bnj1463.3  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
bnj1463.4  |-  ( ta  <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
bnj1463.5  |-  D  =  { x  e.  A  |  -.  E. f ta }
bnj1463.6  |-  ( ps  <->  ( R  FrSe  A  /\  D  =/=  (/) ) )
bnj1463.7  |-  ( ch  <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )
bnj1463.8  |-  ( ta'  <->  [. y  /  x ]. ta )
bnj1463.9  |-  H  =  { f  |  E. y  e.  pred  ( x ,  A ,  R
) ta' }
bnj1463.10  |-  P  = 
U. H
bnj1463.11  |-  Z  = 
<. x ,  ( P  |`  pred ( x ,  A ,  R ) ) >.
bnj1463.12  |-  Q  =  ( P  u.  { <. x ,  ( G `
 Z ) >. } )
bnj1463.13  |-  W  = 
<. z ,  ( Q  |`  pred ( z ,  A ,  R ) ) >.
bnj1463.14  |-  E  =  ( { x }  u.  trCl ( x ,  A ,  R ) )
bnj1463.15  |-  ( ch 
->  Q  e.  _V )
bnj1463.16  |-  ( ch 
->  A. z  e.  E  ( Q `  z )  =  ( G `  W ) )
bnj1463.17  |-  ( ch 
->  Q  Fn  E
)
bnj1463.18  |-  ( ch 
->  E  e.  B
)
Assertion
Ref Expression
bnj1463  |-  ( ch 
->  Q  e.  C
)
Distinct variable groups:    A, d,
f, x    B, f    E, d, z    G, d, f, x, z    z, Q    R, d, f, x   
z, Y    y, d, x
Allowed substitution hints:    ps( x, y, z, f, d)    ch( x, y, z, f, d)    ta( x, y, z, f, d)    A( y, z)    B( x, y, z, d)    C( x, y, z, f, d)    D( x, y, z, f, d)    P( x, y, z, f, d)    Q( x, y, f, d)    R( y, z)    E( x, y, f)    G( y)    H( x, y, z, f, d)    W( x, y, z, f, d)    Y( x, y, f, d)    Z( x, y, z, f, d)    ta'( x, y, z, f, d)

Proof of Theorem bnj1463
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 bnj1463.18 . . . . . . 7  |-  ( ch 
->  E  e.  B
)
21elexd 3214 . . . . . 6  |-  ( ch 
->  E  e.  _V )
3 eleq1 2689 . . . . . . . 8  |-  ( d  =  E  ->  (
d  e.  B  <->  E  e.  B ) )
4 fneq2 5980 . . . . . . . . 9  |-  ( d  =  E  ->  ( Q  Fn  d  <->  Q  Fn  E ) )
5 raleq 3138 . . . . . . . . 9  |-  ( d  =  E  ->  ( A. z  e.  d 
( Q `  z
)  =  ( G `
 W )  <->  A. z  e.  E  ( Q `  z )  =  ( G `  W ) ) )
64, 5anbi12d 747 . . . . . . . 8  |-  ( d  =  E  ->  (
( Q  Fn  d  /\  A. z  e.  d  ( Q `  z
)  =  ( G `
 W ) )  <-> 
( Q  Fn  E  /\  A. z  e.  E  ( Q `  z )  =  ( G `  W ) ) ) )
73, 6anbi12d 747 . . . . . . 7  |-  ( d  =  E  ->  (
( d  e.  B  /\  ( Q  Fn  d  /\  A. z  e.  d  ( Q `  z
)  =  ( G `
 W ) ) )  <->  ( E  e.  B  /\  ( Q  Fn  E  /\  A. z  e.  E  ( Q `  z )  =  ( G `  W ) ) ) ) )
8 bnj1463.1 . . . . . . . . . . . 12  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
98bnj1317 30892 . . . . . . . . . . 11  |-  ( w  e.  B  ->  A. d  w  e.  B )
109nfcii 2755 . . . . . . . . . 10  |-  F/_ d B
1110nfel2 2781 . . . . . . . . 9  |-  F/ d  E  e.  B
12 bnj1463.2 . . . . . . . . . . . . 13  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
13 bnj1463.3 . . . . . . . . . . . . 13  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
14 bnj1463.4 . . . . . . . . . . . . 13  |-  ( ta  <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
15 bnj1463.5 . . . . . . . . . . . . 13  |-  D  =  { x  e.  A  |  -.  E. f ta }
16 bnj1463.6 . . . . . . . . . . . . 13  |-  ( ps  <->  ( R  FrSe  A  /\  D  =/=  (/) ) )
17 bnj1463.7 . . . . . . . . . . . . 13  |-  ( ch  <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )
18 bnj1463.8 . . . . . . . . . . . . 13  |-  ( ta'  <->  [. y  /  x ]. ta )
19 bnj1463.9 . . . . . . . . . . . . 13  |-  H  =  { f  |  E. y  e.  pred  ( x ,  A ,  R
) ta' }
20 bnj1463.10 . . . . . . . . . . . . 13  |-  P  = 
U. H
21 bnj1463.11 . . . . . . . . . . . . 13  |-  Z  = 
<. x ,  ( P  |`  pred ( x ,  A ,  R ) ) >.
22 bnj1463.12 . . . . . . . . . . . . 13  |-  Q  =  ( P  u.  { <. x ,  ( G `
 Z ) >. } )
238, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22bnj1467 31122 . . . . . . . . . . . 12  |-  ( w  e.  Q  ->  A. d  w  e.  Q )
2423nfcii 2755 . . . . . . . . . . 11  |-  F/_ d Q
25 nfcv 2764 . . . . . . . . . . 11  |-  F/_ d E
2624, 25nffn 5987 . . . . . . . . . 10  |-  F/ d  Q  Fn  E
27 bnj1463.13 . . . . . . . . . . . . 13  |-  W  = 
<. z ,  ( Q  |`  pred ( z ,  A ,  R ) ) >.
288, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 27bnj1446 31113 . . . . . . . . . . . 12  |-  ( ( Q `  z )  =  ( G `  W )  ->  A. d
( Q `  z
)  =  ( G `
 W ) )
2928nf5i 2024 . . . . . . . . . . 11  |-  F/ d ( Q `  z
)  =  ( G `
 W )
3025, 29nfral 2945 . . . . . . . . . 10  |-  F/ d A. z  e.  E  ( Q `  z )  =  ( G `  W )
3126, 30nfan 1828 . . . . . . . . 9  |-  F/ d ( Q  Fn  E  /\  A. z  e.  E  ( Q `  z )  =  ( G `  W ) )
3211, 31nfan 1828 . . . . . . . 8  |-  F/ d ( E  e.  B  /\  ( Q  Fn  E  /\  A. z  e.  E  ( Q `  z )  =  ( G `  W ) ) )
3332nf5ri 2065 . . . . . . 7  |-  ( ( E  e.  B  /\  ( Q  Fn  E  /\  A. z  e.  E  ( Q `  z )  =  ( G `  W ) ) )  ->  A. d ( E  e.  B  /\  ( Q  Fn  E  /\  A. z  e.  E  ( Q `  z )  =  ( G `  W ) ) ) )
34 bnj1463.17 . . . . . . . 8  |-  ( ch 
->  Q  Fn  E
)
35 bnj1463.16 . . . . . . . 8  |-  ( ch 
->  A. z  e.  E  ( Q `  z )  =  ( G `  W ) )
361, 34, 35jca32 558 . . . . . . 7  |-  ( ch 
->  ( E  e.  B  /\  ( Q  Fn  E  /\  A. z  e.  E  ( Q `  z )  =  ( G `  W ) ) ) )
377, 33, 36bnj1465 30915 . . . . . 6  |-  ( ( ch  /\  E  e. 
_V )  ->  E. d
( d  e.  B  /\  ( Q  Fn  d  /\  A. z  e.  d  ( Q `  z
)  =  ( G `
 W ) ) ) )
382, 37mpdan 702 . . . . 5  |-  ( ch 
->  E. d ( d  e.  B  /\  ( Q  Fn  d  /\  A. z  e.  d  ( Q `  z )  =  ( G `  W ) ) ) )
39 df-rex 2918 . . . . 5  |-  ( E. d  e.  B  ( Q  Fn  d  /\  A. z  e.  d  ( Q `  z )  =  ( G `  W ) )  <->  E. d
( d  e.  B  /\  ( Q  Fn  d  /\  A. z  e.  d  ( Q `  z
)  =  ( G `
 W ) ) ) )
4038, 39sylibr 224 . . . 4  |-  ( ch 
->  E. d  e.  B  ( Q  Fn  d  /\  A. z  e.  d  ( Q `  z
)  =  ( G `
 W ) ) )
41 bnj1463.15 . . . . 5  |-  ( ch 
->  Q  e.  _V )
42 nfcv 2764 . . . . . . . 8  |-  F/_ f B
438, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22bnj1466 31121 . . . . . . . . . . 11  |-  ( w  e.  Q  ->  A. f  w  e.  Q )
4443nfcii 2755 . . . . . . . . . 10  |-  F/_ f Q
45 nfcv 2764 . . . . . . . . . 10  |-  F/_ f
d
4644, 45nffn 5987 . . . . . . . . 9  |-  F/ f  Q  Fn  d
478, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 27bnj1448 31115 . . . . . . . . . . 11  |-  ( ( Q `  z )  =  ( G `  W )  ->  A. f
( Q `  z
)  =  ( G `
 W ) )
4847nf5i 2024 . . . . . . . . . 10  |-  F/ f ( Q `  z
)  =  ( G `
 W )
4945, 48nfral 2945 . . . . . . . . 9  |-  F/ f A. z  e.  d  ( Q `  z
)  =  ( G `
 W )
5046, 49nfan 1828 . . . . . . . 8  |-  F/ f ( Q  Fn  d  /\  A. z  e.  d  ( Q `  z
)  =  ( G `
 W ) )
5142, 50nfrex 3007 . . . . . . 7  |-  F/ f E. d  e.  B  ( Q  Fn  d  /\  A. z  e.  d  ( Q `  z
)  =  ( G `
 W ) )
5251nf5ri 2065 . . . . . 6  |-  ( E. d  e.  B  ( Q  Fn  d  /\  A. z  e.  d  ( Q `  z )  =  ( G `  W ) )  ->  A. f E. d  e.  B  ( Q  Fn  d  /\  A. z  e.  d  ( Q `  z )  =  ( G `  W ) ) )
5324nfeq2 2780 . . . . . . 7  |-  F/ d  f  =  Q
54 fneq1 5979 . . . . . . . 8  |-  ( f  =  Q  ->  (
f  Fn  d  <->  Q  Fn  d ) )
55 fveq1 6190 . . . . . . . . . 10  |-  ( f  =  Q  ->  (
f `  z )  =  ( Q `  z ) )
56 reseq1 5390 . . . . . . . . . . . . 13  |-  ( f  =  Q  ->  (
f  |`  pred ( z ,  A ,  R ) )  =  ( Q  |`  pred ( z ,  A ,  R ) ) )
5756opeq2d 4409 . . . . . . . . . . . 12  |-  ( f  =  Q  ->  <. z ,  ( f  |`  pred ( z ,  A ,  R ) ) >.  =  <. z ,  ( Q  |`  pred ( z ,  A ,  R
) ) >. )
5857, 27syl6eqr 2674 . . . . . . . . . . 11  |-  ( f  =  Q  ->  <. z ,  ( f  |`  pred ( z ,  A ,  R ) ) >.  =  W )
5958fveq2d 6195 . . . . . . . . . 10  |-  ( f  =  Q  ->  ( G `  <. z ,  ( f  |`  pred (
z ,  A ,  R ) ) >.
)  =  ( G `
 W ) )
6055, 59eqeq12d 2637 . . . . . . . . 9  |-  ( f  =  Q  ->  (
( f `  z
)  =  ( G `
 <. z ,  ( f  |`  pred ( z ,  A ,  R
) ) >. )  <->  ( Q `  z )  =  ( G `  W ) ) )
6160ralbidv 2986 . . . . . . . 8  |-  ( f  =  Q  ->  ( A. z  e.  d 
( f `  z
)  =  ( G `
 <. z ,  ( f  |`  pred ( z ,  A ,  R
) ) >. )  <->  A. z  e.  d  ( Q `  z )  =  ( G `  W ) ) )
6254, 61anbi12d 747 . . . . . . 7  |-  ( f  =  Q  ->  (
( f  Fn  d  /\  A. z  e.  d  ( f `  z
)  =  ( G `
 <. z ,  ( f  |`  pred ( z ,  A ,  R
) ) >. )
)  <->  ( Q  Fn  d  /\  A. z  e.  d  ( Q `  z )  =  ( G `  W ) ) ) )
6353, 62rexbid 3051 . . . . . 6  |-  ( f  =  Q  ->  ( E. d  e.  B  ( f  Fn  d  /\  A. z  e.  d  ( f `  z
)  =  ( G `
 <. z ,  ( f  |`  pred ( z ,  A ,  R
) ) >. )
)  <->  E. d  e.  B  ( Q  Fn  d  /\  A. z  e.  d  ( Q `  z
)  =  ( G `
 W ) ) ) )
6452, 63, 43bnj1468 30916 . . . . 5  |-  ( Q  e.  _V  ->  ( [. Q  /  f ]. E. d  e.  B  ( f  Fn  d  /\  A. z  e.  d  ( f `  z
)  =  ( G `
 <. z ,  ( f  |`  pred ( z ,  A ,  R
) ) >. )
)  <->  E. d  e.  B  ( Q  Fn  d  /\  A. z  e.  d  ( Q `  z
)  =  ( G `
 W ) ) ) )
6541, 64syl 17 . . . 4  |-  ( ch 
->  ( [. Q  / 
f ]. E. d  e.  B  ( f  Fn  d  /\  A. z  e.  d  ( f `  z )  =  ( G `  <. z ,  ( f  |`  pred ( z ,  A ,  R ) ) >.
) )  <->  E. d  e.  B  ( Q  Fn  d  /\  A. z  e.  d  ( Q `  z )  =  ( G `  W ) ) ) )
6640, 65mpbird 247 . . 3  |-  ( ch 
->  [. Q  /  f ]. E. d  e.  B  ( f  Fn  d  /\  A. z  e.  d  ( f `  z
)  =  ( G `
 <. z ,  ( f  |`  pred ( z ,  A ,  R
) ) >. )
) )
67 fveq2 6191 . . . . . . . 8  |-  ( x  =  z  ->  (
f `  x )  =  ( f `  z ) )
68 id 22 . . . . . . . . . . 11  |-  ( x  =  z  ->  x  =  z )
69 bnj602 30985 . . . . . . . . . . . 12  |-  ( x  =  z  ->  pred (
x ,  A ,  R )  =  pred ( z ,  A ,  R ) )
7069reseq2d 5396 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
f  |`  pred ( x ,  A ,  R ) )  =  ( f  |`  pred ( z ,  A ,  R ) ) )
7168, 70opeq12d 4410 . . . . . . . . . 10  |-  ( x  =  z  ->  <. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.  =  <. z ,  ( f  |`  pred ( z ,  A ,  R
) ) >. )
7212, 71syl5eq 2668 . . . . . . . . 9  |-  ( x  =  z  ->  Y  =  <. z ,  ( f  |`  pred ( z ,  A ,  R
) ) >. )
7372fveq2d 6195 . . . . . . . 8  |-  ( x  =  z  ->  ( G `  Y )  =  ( G `  <. z ,  ( f  |`  pred ( z ,  A ,  R ) ) >. ) )
7467, 73eqeq12d 2637 . . . . . . 7  |-  ( x  =  z  ->  (
( f `  x
)  =  ( G `
 Y )  <->  ( f `  z )  =  ( G `  <. z ,  ( f  |`  pred ( z ,  A ,  R ) ) >.
) ) )
7574cbvralv 3171 . . . . . 6  |-  ( A. x  e.  d  (
f `  x )  =  ( G `  Y )  <->  A. z  e.  d  ( f `  z )  =  ( G `  <. z ,  ( f  |`  pred ( z ,  A ,  R ) ) >.
) )
7675anbi2i 730 . . . . 5  |-  ( ( f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) )  <->  ( f  Fn  d  /\  A. z  e.  d  ( f `  z )  =  ( G `  <. z ,  ( f  |`  pred ( z ,  A ,  R ) ) >.
) ) )
7776rexbii 3041 . . . 4  |-  ( E. d  e.  B  ( f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) )  <->  E. d  e.  B  ( f  Fn  d  /\  A. z  e.  d  ( f `  z )  =  ( G `  <. z ,  ( f  |`  pred ( z ,  A ,  R ) ) >.
) ) )
7877sbcbii 3491 . . 3  |-  ( [. Q  /  f ]. E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) )  <->  [. Q  / 
f ]. E. d  e.  B  ( f  Fn  d  /\  A. z  e.  d  ( f `  z )  =  ( G `  <. z ,  ( f  |`  pred ( z ,  A ,  R ) ) >.
) ) )
7966, 78sylibr 224 . 2  |-  ( ch 
->  [. Q  /  f ]. E. d  e.  B  ( f  Fn  d  /\  A. x  e.  d  ( f `  x
)  =  ( G `
 Y ) ) )
8013bnj1454 30912 . . 3  |-  ( Q  e.  _V  ->  ( Q  e.  C  <->  [. Q  / 
f ]. E. d  e.  B  ( f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) ) )
8141, 80syl 17 . 2  |-  ( ch 
->  ( Q  e.  C  <->  [. Q  /  f ]. E. d  e.  B  ( f  Fn  d  /\  A. x  e.  d  ( f `  x
)  =  ( G `
 Y ) ) ) )
8279, 81mpbird 247 1  |-  ( ch 
->  Q  e.  C
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200   [.wsbc 3435    u. cun 3572    C_ wss 3574   (/)c0 3915   {csn 4177   <.cop 4183   U.cuni 4436   class class class wbr 4653   dom cdm 5114    |` cres 5116    Fn wfn 5883   ` cfv 5888    predc-bnj14 30754    FrSe w-bnj15 30758    trClc-bnj18 30760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-bnj14 30755
This theorem is referenced by:  bnj1312  31126
  Copyright terms: Public domain W3C validator