| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cad0 | Structured version Visualization version Unicode version | ||
| Description: If one input is false, then the adder carry is true exactly when both of the other two inputs are true. (Contributed by Mario Carneiro, 8-Sep-2016.) |
| Ref | Expression |
|---|---|
| cad0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cad 1546 |
. 2
| |
| 2 | idd 24 |
. . . 4
| |
| 3 | pm2.21 120 |
. . . . 5
| |
| 4 | 3 | adantrd 484 |
. . . 4
|
| 5 | 2, 4 | jaod 395 |
. . 3
|
| 6 | orc 400 |
. . 3
| |
| 7 | 5, 6 | impbid1 215 |
. 2
|
| 8 | 1, 7 | syl5bb 272 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-cad 1546 |
| This theorem is referenced by: cadifp 1557 sadadd2lem2 15172 sadcaddlem 15179 saddisjlem 15186 |
| Copyright terms: Public domain | W3C validator |