| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sadadd2lem2 | Structured version Visualization version Unicode version | ||
| Description: The core of the proof of
sadadd2 15182. The intuitive justification for this
is that cadd is true if at least two arguments are true, and hadd
is true if an odd number of arguments are true, so altogether the result
is |
| Ref | Expression |
|---|---|
| sadadd2lem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 10032 |
. . . . . . . . 9
| |
| 2 | ifcl 4130 |
. . . . . . . . 9
| |
| 3 | 1, 2 | mpan2 707 |
. . . . . . . 8
|
| 4 | 3 | ad2antrr 762 |
. . . . . . 7
|
| 5 | simpll 790 |
. . . . . . 7
| |
| 6 | 4, 5, 5 | add12d 10262 |
. . . . . 6
|
| 7 | 5, 4, 5 | addassd 10062 |
. . . . . 6
|
| 8 | 6, 7 | eqtr4d 2659 |
. . . . 5
|
| 9 | pm5.501 356 |
. . . . . . . . 9
| |
| 10 | 9 | adantl 482 |
. . . . . . . 8
|
| 11 | 10 | bicomd 213 |
. . . . . . 7
|
| 12 | 11 | ifbid 4108 |
. . . . . 6
|
| 13 | simpr 477 |
. . . . . . . . 9
| |
| 14 | 13 | orcd 407 |
. . . . . . . 8
|
| 15 | iftrue 4092 |
. . . . . . . 8
| |
| 16 | 14, 15 | syl 17 |
. . . . . . 7
|
| 17 | 5 | 2timesd 11275 |
. . . . . . 7
|
| 18 | 16, 17 | eqtrd 2656 |
. . . . . 6
|
| 19 | 12, 18 | oveq12d 6668 |
. . . . 5
|
| 20 | iftrue 4092 |
. . . . . . . 8
| |
| 21 | 20 | adantl 482 |
. . . . . . 7
|
| 22 | 21 | oveq1d 6665 |
. . . . . 6
|
| 23 | 22 | oveq1d 6665 |
. . . . 5
|
| 24 | 8, 19, 23 | 3eqtr4d 2666 |
. . . 4
|
| 25 | iffalse 4095 |
. . . . . . . . 9
| |
| 26 | 25 | adantl 482 |
. . . . . . . 8
|
| 27 | 26 | oveq1d 6665 |
. . . . . . 7
|
| 28 | 3 | ad2antrr 762 |
. . . . . . . 8
|
| 29 | 28 | addid2d 10237 |
. . . . . . 7
|
| 30 | 27, 29 | eqtrd 2656 |
. . . . . 6
|
| 31 | 30 | oveq1d 6665 |
. . . . 5
|
| 32 | 2cnd 11093 |
. . . . . . . . . . . 12
| |
| 33 | id 22 |
. . . . . . . . . . . 12
| |
| 34 | 32, 33 | mulcld 10060 |
. . . . . . . . . . 11
|
| 35 | 34 | addid2d 10237 |
. . . . . . . . . 10
|
| 36 | 2times 11145 |
. . . . . . . . . 10
| |
| 37 | 35, 36 | eqtrd 2656 |
. . . . . . . . 9
|
| 38 | 37 | adantr 481 |
. . . . . . . 8
|
| 39 | iftrue 4092 |
. . . . . . . . . 10
| |
| 40 | 39 | adantl 482 |
. . . . . . . . 9
|
| 41 | iftrue 4092 |
. . . . . . . . . 10
| |
| 42 | 41 | adantl 482 |
. . . . . . . . 9
|
| 43 | 40, 42 | oveq12d 6668 |
. . . . . . . 8
|
| 44 | iftrue 4092 |
. . . . . . . . . 10
| |
| 45 | 44 | adantl 482 |
. . . . . . . . 9
|
| 46 | 45 | oveq1d 6665 |
. . . . . . . 8
|
| 47 | 38, 43, 46 | 3eqtr4d 2666 |
. . . . . . 7
|
| 48 | simpl 473 |
. . . . . . . . 9
| |
| 49 | 0cnd 10033 |
. . . . . . . . 9
| |
| 50 | 48, 49 | addcomd 10238 |
. . . . . . . 8
|
| 51 | iffalse 4095 |
. . . . . . . . . 10
| |
| 52 | 51 | adantl 482 |
. . . . . . . . 9
|
| 53 | iffalse 4095 |
. . . . . . . . . 10
| |
| 54 | 53 | adantl 482 |
. . . . . . . . 9
|
| 55 | 52, 54 | oveq12d 6668 |
. . . . . . . 8
|
| 56 | iffalse 4095 |
. . . . . . . . . 10
| |
| 57 | 56 | adantl 482 |
. . . . . . . . 9
|
| 58 | 57 | oveq1d 6665 |
. . . . . . . 8
|
| 59 | 50, 55, 58 | 3eqtr4d 2666 |
. . . . . . 7
|
| 60 | 47, 59 | pm2.61dan 832 |
. . . . . 6
|
| 61 | 60 | ad2antrr 762 |
. . . . 5
|
| 62 | ifnot 4133 |
. . . . . . 7
| |
| 63 | nbn2 360 |
. . . . . . . . 9
| |
| 64 | 63 | adantl 482 |
. . . . . . . 8
|
| 65 | 64 | ifbid 4108 |
. . . . . . 7
|
| 66 | 62, 65 | syl5eqr 2670 |
. . . . . 6
|
| 67 | biorf 420 |
. . . . . . . 8
| |
| 68 | 67 | adantl 482 |
. . . . . . 7
|
| 69 | 68 | ifbid 4108 |
. . . . . 6
|
| 70 | 66, 69 | oveq12d 6668 |
. . . . 5
|
| 71 | 31, 61, 70 | 3eqtr2rd 2663 |
. . . 4
|
| 72 | 24, 71 | pm2.61dan 832 |
. . 3
|
| 73 | hadrot 1540 |
. . . . . . 7
| |
| 74 | had1 1542 |
. . . . . . 7
| |
| 75 | 73, 74 | syl5bbr 274 |
. . . . . 6
|
| 76 | 75 | adantl 482 |
. . . . 5
|
| 77 | 76 | ifbid 4108 |
. . . 4
|
| 78 | cad1 1555 |
. . . . . 6
| |
| 79 | 78 | adantl 482 |
. . . . 5
|
| 80 | 79 | ifbid 4108 |
. . . 4
|
| 81 | 77, 80 | oveq12d 6668 |
. . 3
|
| 82 | iftrue 4092 |
. . . . 5
| |
| 83 | 82 | adantl 482 |
. . . 4
|
| 84 | 83 | oveq2d 6666 |
. . 3
|
| 85 | 72, 81, 84 | 3eqtr4d 2666 |
. 2
|
| 86 | 20 | adantl 482 |
. . . . . 6
|
| 87 | 86 | oveq1d 6665 |
. . . . 5
|
| 88 | 45 | oveq2d 6666 |
. . . . . . . 8
|
| 89 | 38, 43, 88 | 3eqtr4d 2666 |
. . . . . . 7
|
| 90 | 54, 57 | eqtr4d 2659 |
. . . . . . . 8
|
| 91 | 52, 90 | oveq12d 6668 |
. . . . . . 7
|
| 92 | 89, 91 | pm2.61dan 832 |
. . . . . 6
|
| 93 | 92 | ad2antrr 762 |
. . . . 5
|
| 94 | 9 | adantl 482 |
. . . . . . . . . 10
|
| 95 | 94 | notbid 308 |
. . . . . . . . 9
|
| 96 | df-xor 1465 |
. . . . . . . . 9
| |
| 97 | 95, 96 | syl6bbr 278 |
. . . . . . . 8
|
| 98 | 97 | ifbid 4108 |
. . . . . . 7
|
| 99 | 62, 98 | syl5eqr 2670 |
. . . . . 6
|
| 100 | ibar 525 |
. . . . . . . 8
| |
| 101 | 100 | adantl 482 |
. . . . . . 7
|
| 102 | 101 | ifbid 4108 |
. . . . . 6
|
| 103 | 99, 102 | oveq12d 6668 |
. . . . 5
|
| 104 | 87, 93, 103 | 3eqtr2rd 2663 |
. . . 4
|
| 105 | simplll 798 |
. . . . . . 7
| |
| 106 | 0cnd 10033 |
. . . . . . 7
| |
| 107 | 105, 106 | ifclda 4120 |
. . . . . 6
|
| 108 | 0cnd 10033 |
. . . . . 6
| |
| 109 | 107, 108 | addcomd 10238 |
. . . . 5
|
| 110 | 63 | adantl 482 |
. . . . . . . . 9
|
| 111 | 110 | con1bid 345 |
. . . . . . . 8
|
| 112 | 96, 111 | syl5bb 272 |
. . . . . . 7
|
| 113 | 112 | ifbid 4108 |
. . . . . 6
|
| 114 | simpr 477 |
. . . . . . . 8
| |
| 115 | 114 | intnanrd 963 |
. . . . . . 7
|
| 116 | iffalse 4095 |
. . . . . . 7
| |
| 117 | 115, 116 | syl 17 |
. . . . . 6
|
| 118 | 113, 117 | oveq12d 6668 |
. . . . 5
|
| 119 | 25 | adantl 482 |
. . . . . 6
|
| 120 | 119 | oveq1d 6665 |
. . . . 5
|
| 121 | 109, 118, 120 | 3eqtr4d 2666 |
. . . 4
|
| 122 | 104, 121 | pm2.61dan 832 |
. . 3
|
| 123 | had0 1543 |
. . . . . . 7
| |
| 124 | 73, 123 | syl5bbr 274 |
. . . . . 6
|
| 125 | 124 | adantl 482 |
. . . . 5
|
| 126 | 125 | ifbid 4108 |
. . . 4
|
| 127 | cad0 1556 |
. . . . . 6
| |
| 128 | 127 | adantl 482 |
. . . . 5
|
| 129 | 128 | ifbid 4108 |
. . . 4
|
| 130 | 126, 129 | oveq12d 6668 |
. . 3
|
| 131 | iffalse 4095 |
. . . . 5
| |
| 132 | 131 | oveq2d 6666 |
. . . 4
|
| 133 | ifcl 4130 |
. . . . . . 7
| |
| 134 | 1, 133 | mpan2 707 |
. . . . . 6
|
| 135 | 134, 3 | addcld 10059 |
. . . . 5
|
| 136 | 135 | addid1d 10236 |
. . . 4
|
| 137 | 132, 136 | sylan9eqr 2678 |
. . 3
|
| 138 | 122, 130, 137 | 3eqtr4d 2666 |
. 2
|
| 139 | 85, 138 | pm2.61dan 832 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-xor 1465 df-tru 1486 df-had 1533 df-cad 1546 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-ltxr 10079 df-2 11079 |
| This theorem is referenced by: sadadd2lem 15181 |
| Copyright terms: Public domain | W3C validator |