MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  saddisjlem Structured version   Visualization version   Unicode version

Theorem saddisjlem 15186
Description: Lemma for sadadd 15189. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
saddisj.1  |-  ( ph  ->  A  C_  NN0 )
saddisj.2  |-  ( ph  ->  B  C_  NN0 )
saddisj.3  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
saddisjlem.c  |-  C  =  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
saddisjlem.3  |-  ( ph  ->  N  e.  NN0 )
Assertion
Ref Expression
saddisjlem  |-  ( ph  ->  ( N  e.  ( A sadd  B )  <->  N  e.  ( A  u.  B
) ) )
Distinct variable groups:    m, c, n    A, c, m    B, c, m    n, N
Allowed substitution hints:    ph( m, n, c)    A( n)    B( n)    C( m, n, c)    N( m, c)

Proof of Theorem saddisjlem
Dummy variables  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 saddisj.1 . . 3  |-  ( ph  ->  A  C_  NN0 )
2 saddisj.2 . . 3  |-  ( ph  ->  B  C_  NN0 )
3 saddisjlem.c . . 3  |-  C  =  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
4 saddisjlem.3 . . 3  |-  ( ph  ->  N  e.  NN0 )
51, 2, 3, 4sadval 15178 . 2  |-  ( ph  ->  ( N  e.  ( A sadd  B )  <-> hadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `  N ) ) ) )
6 fveq2 6191 . . . . . . . 8  |-  ( x  =  0  ->  ( C `  x )  =  ( C ` 
0 ) )
76eleq2d 2687 . . . . . . 7  |-  ( x  =  0  ->  ( (/) 
e.  ( C `  x )  <->  (/)  e.  ( C `  0 ) ) )
87notbid 308 . . . . . 6  |-  ( x  =  0  ->  ( -.  (/)  e.  ( C `
 x )  <->  -.  (/)  e.  ( C `  0 ) ) )
98imbi2d 330 . . . . 5  |-  ( x  =  0  ->  (
( ph  ->  -.  (/)  e.  ( C `  x ) )  <->  ( ph  ->  -.  (/)  e.  ( C ` 
0 ) ) ) )
10 fveq2 6191 . . . . . . . 8  |-  ( x  =  k  ->  ( C `  x )  =  ( C `  k ) )
1110eleq2d 2687 . . . . . . 7  |-  ( x  =  k  ->  ( (/) 
e.  ( C `  x )  <->  (/)  e.  ( C `  k ) ) )
1211notbid 308 . . . . . 6  |-  ( x  =  k  ->  ( -.  (/)  e.  ( C `
 x )  <->  -.  (/)  e.  ( C `  k ) ) )
1312imbi2d 330 . . . . 5  |-  ( x  =  k  ->  (
( ph  ->  -.  (/)  e.  ( C `  x ) )  <->  ( ph  ->  -.  (/)  e.  ( C `  k ) ) ) )
14 fveq2 6191 . . . . . . . 8  |-  ( x  =  ( k  +  1 )  ->  ( C `  x )  =  ( C `  ( k  +  1 ) ) )
1514eleq2d 2687 . . . . . . 7  |-  ( x  =  ( k  +  1 )  ->  ( (/) 
e.  ( C `  x )  <->  (/)  e.  ( C `  ( k  +  1 ) ) ) )
1615notbid 308 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  ( -.  (/)  e.  ( C `
 x )  <->  -.  (/)  e.  ( C `  ( k  +  1 ) ) ) )
1716imbi2d 330 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  (
( ph  ->  -.  (/)  e.  ( C `  x ) )  <->  ( ph  ->  -.  (/)  e.  ( C `  ( k  +  1 ) ) ) ) )
18 fveq2 6191 . . . . . . . 8  |-  ( x  =  N  ->  ( C `  x )  =  ( C `  N ) )
1918eleq2d 2687 . . . . . . 7  |-  ( x  =  N  ->  ( (/) 
e.  ( C `  x )  <->  (/)  e.  ( C `  N ) ) )
2019notbid 308 . . . . . 6  |-  ( x  =  N  ->  ( -.  (/)  e.  ( C `
 x )  <->  -.  (/)  e.  ( C `  N ) ) )
2120imbi2d 330 . . . . 5  |-  ( x  =  N  ->  (
( ph  ->  -.  (/)  e.  ( C `  x ) )  <->  ( ph  ->  -.  (/)  e.  ( C `  N ) ) ) )
221, 2, 3sadc0 15176 . . . . 5  |-  ( ph  ->  -.  (/)  e.  ( C `
 0 ) )
23 noel 3919 . . . . . . . . 9  |-  -.  k  e.  (/)
241ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  (/) 
e.  ( C `  k ) )  ->  A  C_  NN0 )
252ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  (/) 
e.  ( C `  k ) )  ->  B  C_  NN0 )
26 simplr 792 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  (/) 
e.  ( C `  k ) )  -> 
k  e.  NN0 )
2724, 25, 3, 26sadcp1 15177 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  (/) 
e.  ( C `  k ) )  -> 
( (/)  e.  ( C `
 ( k  +  1 ) )  <-> cadd ( k  e.  A ,  k  e.  B ,  (/)  e.  ( C `  k ) ) ) )
28 cad0 1556 . . . . . . . . . . 11  |-  ( -.  (/)  e.  ( C `  k )  ->  (cadd ( k  e.  A ,  k  e.  B ,  (/)  e.  ( C `
 k ) )  <-> 
( k  e.  A  /\  k  e.  B
) ) )
2928adantl 482 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  (/) 
e.  ( C `  k ) )  -> 
(cadd ( k  e.  A ,  k  e.  B ,  (/)  e.  ( C `  k ) )  <->  ( k  e.  A  /\  k  e.  B ) ) )
30 elin 3796 . . . . . . . . . . 11  |-  ( k  e.  ( A  i^i  B )  <->  ( k  e.  A  /\  k  e.  B ) )
31 saddisj.3 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
3231ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  (/) 
e.  ( C `  k ) )  -> 
( A  i^i  B
)  =  (/) )
3332eleq2d 2687 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  (/) 
e.  ( C `  k ) )  -> 
( k  e.  ( A  i^i  B )  <-> 
k  e.  (/) ) )
3430, 33syl5bbr 274 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  (/) 
e.  ( C `  k ) )  -> 
( ( k  e.  A  /\  k  e.  B )  <->  k  e.  (/) ) )
3527, 29, 343bitrd 294 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  (/) 
e.  ( C `  k ) )  -> 
( (/)  e.  ( C `
 ( k  +  1 ) )  <->  k  e.  (/) ) )
3623, 35mtbiri 317 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  (/) 
e.  ( C `  k ) )  ->  -.  (/)  e.  ( C `
 ( k  +  1 ) ) )
3736ex 450 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( -.  (/) 
e.  ( C `  k )  ->  -.  (/) 
e.  ( C `  ( k  +  1 ) ) ) )
3837expcom 451 . . . . . 6  |-  ( k  e.  NN0  ->  ( ph  ->  ( -.  (/)  e.  ( C `  k )  ->  -.  (/)  e.  ( C `  ( k  +  1 ) ) ) ) )
3938a2d 29 . . . . 5  |-  ( k  e.  NN0  ->  ( (
ph  ->  -.  (/)  e.  ( C `  k ) )  ->  ( ph  ->  -.  (/)  e.  ( C `
 ( k  +  1 ) ) ) ) )
409, 13, 17, 21, 22, 39nn0ind 11472 . . . 4  |-  ( N  e.  NN0  ->  ( ph  ->  -.  (/)  e.  ( C `
 N ) ) )
414, 40mpcom 38 . . 3  |-  ( ph  ->  -.  (/)  e.  ( C `
 N ) )
42 hadrot 1540 . . . 4  |-  (hadd (
(/)  e.  ( C `  N ) ,  N  e.  A ,  N  e.  B )  <-> hadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `  N ) ) )
43 had0 1543 . . . 4  |-  ( -.  (/)  e.  ( C `  N )  ->  (hadd ( (/)  e.  ( C `
 N ) ,  N  e.  A ,  N  e.  B )  <->  ( N  e.  A  \/_  N  e.  B )
) )
4442, 43syl5bbr 274 . . 3  |-  ( -.  (/)  e.  ( C `  N )  ->  (hadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `
 N ) )  <-> 
( N  e.  A  \/_  N  e.  B ) ) )
4541, 44syl 17 . 2  |-  ( ph  ->  (hadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `  N ) )  <->  ( N  e.  A  \/_  N  e.  B ) ) )
46 noel 3919 . . . . 5  |-  -.  N  e.  (/)
47 elin 3796 . . . . . 6  |-  ( N  e.  ( A  i^i  B )  <->  ( N  e.  A  /\  N  e.  B ) )
4831eleq2d 2687 . . . . . 6  |-  ( ph  ->  ( N  e.  ( A  i^i  B )  <-> 
N  e.  (/) ) )
4947, 48syl5bbr 274 . . . . 5  |-  ( ph  ->  ( ( N  e.  A  /\  N  e.  B )  <->  N  e.  (/) ) )
5046, 49mtbiri 317 . . . 4  |-  ( ph  ->  -.  ( N  e.  A  /\  N  e.  B ) )
51 xor2 1470 . . . . 5  |-  ( ( N  e.  A  \/_  N  e.  B )  <->  ( ( N  e.  A  \/  N  e.  B
)  /\  -.  ( N  e.  A  /\  N  e.  B )
) )
5251rbaib 947 . . . 4  |-  ( -.  ( N  e.  A  /\  N  e.  B
)  ->  ( ( N  e.  A  \/_  N  e.  B )  <->  ( N  e.  A  \/  N  e.  B )
) )
5350, 52syl 17 . . 3  |-  ( ph  ->  ( ( N  e.  A  \/_  N  e.  B )  <->  ( N  e.  A  \/  N  e.  B ) ) )
54 elun 3753 . . 3  |-  ( N  e.  ( A  u.  B )  <->  ( N  e.  A  \/  N  e.  B ) )
5553, 54syl6bbr 278 . 2  |-  ( ph  ->  ( ( N  e.  A  \/_  N  e.  B )  <->  N  e.  ( A  u.  B
) ) )
565, 45, 553bitrd 294 1  |-  ( ph  ->  ( N  e.  ( A sadd  B )  <->  N  e.  ( A  u.  B
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    \/_ wxo 1464    = wceq 1483  haddwhad 1532  caddwcad 1545    e. wcel 1990    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1oc1o 7553   2oc2o 7554   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266   NN0cn0 11292    seqcseq 12801   sadd csad 15142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-had 1533  df-cad 1546  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-sad 15173
This theorem is referenced by:  saddisj  15187
  Copyright terms: Public domain W3C validator