| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvrexcsf | Structured version Visualization version Unicode version | ||
| Description: A more general version of cbvrexf 3166 that has no distinct variable restrictions. Changes bound variables using implicit substitution. (Contributed by Andrew Salmon, 13-Jul-2011.) (Proof shortened by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| cbvralcsf.1 |
|
| cbvralcsf.2 |
|
| cbvralcsf.3 |
|
| cbvralcsf.4 |
|
| cbvralcsf.5 |
|
| cbvralcsf.6 |
|
| Ref | Expression |
|---|---|
| cbvrexcsf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvralcsf.1 |
. . . 4
| |
| 2 | cbvralcsf.2 |
. . . 4
| |
| 3 | cbvralcsf.3 |
. . . . 5
| |
| 4 | 3 | nfn 1784 |
. . . 4
|
| 5 | cbvralcsf.4 |
. . . . 5
| |
| 6 | 5 | nfn 1784 |
. . . 4
|
| 7 | cbvralcsf.5 |
. . . 4
| |
| 8 | cbvralcsf.6 |
. . . . 5
| |
| 9 | 8 | notbid 308 |
. . . 4
|
| 10 | 1, 2, 4, 6, 7, 9 | cbvralcsf 3565 |
. . 3
|
| 11 | 10 | notbii 310 |
. 2
|
| 12 | dfrex2 2996 |
. 2
| |
| 13 | dfrex2 2996 |
. 2
| |
| 14 | 11, 12, 13 | 3bitr4i 292 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-sbc 3436 df-csb 3534 |
| This theorem is referenced by: cbvrexv2 3570 |
| Copyright terms: Public domain | W3C validator |