MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknclwwlkdifs Structured version   Visualization version   Unicode version

Theorem clwwlknclwwlkdifs 26873
Description: The set of walks of length n starting with a fixed vertex and ending not at this vertex is the difference between the set of walks of length n starting with this vertex and the set of walks of length n starting with this vertex and ending at this vertex. (Contributed by Alexander van der Vekens, 30-Sep-2018.) (Revised by AV, 7-May-2021.)
Hypotheses
Ref Expression
clwwlknclwwlkdif.a  |-  A  =  { w  e.  ( N WWalksN  G )  |  ( ( w `  0
)  =  X  /\  ( lastS  `  w )  =/= 
X ) }
clwwlknclwwlkdif.b  |-  B  =  { w  e.  ( N WWalksN  G )  |  ( ( lastS  `  w )  =  ( w ` 
0 )  /\  (
w `  0 )  =  X ) }
Assertion
Ref Expression
clwwlknclwwlkdifs  |-  A  =  ( { w  e.  ( N WWalksN  G )  |  ( w ` 
0 )  =  X }  \  B )

Proof of Theorem clwwlknclwwlkdifs
StepHypRef Expression
1 clwwlknclwwlkdif.a . 2  |-  A  =  { w  e.  ( N WWalksN  G )  |  ( ( w `  0
)  =  X  /\  ( lastS  `  w )  =/= 
X ) }
2 clwwlknclwwlkdif.b . . . 4  |-  B  =  { w  e.  ( N WWalksN  G )  |  ( ( lastS  `  w )  =  ( w ` 
0 )  /\  (
w `  0 )  =  X ) }
32difeq2i 3725 . . 3  |-  ( { w  e.  ( N WWalksN  G )  |  ( w `  0 )  =  X }  \  B )  =  ( { w  e.  ( N WWalksN  G )  |  ( w `  0 )  =  X }  \  { w  e.  ( N WWalksN  G )  |  ( ( lastS  `  w )  =  ( w ` 
0 )  /\  (
w `  0 )  =  X ) } )
4 difrab 3901 . . 3  |-  ( { w  e.  ( N WWalksN  G )  |  ( w `  0 )  =  X }  \  { w  e.  ( N WWalksN  G )  |  ( ( lastS  `  w )  =  ( w ` 
0 )  /\  (
w `  0 )  =  X ) } )  =  { w  e.  ( N WWalksN  G )  |  ( ( w `
 0 )  =  X  /\  -.  (
( lastS  `  w )  =  ( w `  0
)  /\  ( w `  0 )  =  X ) ) }
5 ianor 509 . . . . . . . 8  |-  ( -.  ( ( lastS  `  w
)  =  ( w `
 0 )  /\  ( w `  0
)  =  X )  <-> 
( -.  ( lastS  `  w
)  =  ( w `
 0 )  \/ 
-.  ( w ` 
0 )  =  X ) )
6 eqeq2 2633 . . . . . . . . . . . 12  |-  ( ( w `  0 )  =  X  ->  (
( lastS  `  w )  =  ( w `  0
)  <->  ( lastS  `  w )  =  X ) )
76notbid 308 . . . . . . . . . . 11  |-  ( ( w `  0 )  =  X  ->  ( -.  ( lastS  `  w )  =  ( w ` 
0 )  <->  -.  ( lastS  `  w )  =  X ) )
8 neqne 2802 . . . . . . . . . . . . 13  |-  ( -.  ( lastS  `  w )  =  X  ->  ( lastS  `  w
)  =/=  X )
98anim2i 593 . . . . . . . . . . . 12  |-  ( ( ( w `  0
)  =  X  /\  -.  ( lastS  `  w )  =  X )  -> 
( ( w ` 
0 )  =  X  /\  ( lastS  `  w
)  =/=  X ) )
109ex 450 . . . . . . . . . . 11  |-  ( ( w `  0 )  =  X  ->  ( -.  ( lastS  `  w )  =  X  ->  (
( w `  0
)  =  X  /\  ( lastS  `  w )  =/= 
X ) ) )
117, 10sylbid 230 . . . . . . . . . 10  |-  ( ( w `  0 )  =  X  ->  ( -.  ( lastS  `  w )  =  ( w ` 
0 )  ->  (
( w `  0
)  =  X  /\  ( lastS  `  w )  =/= 
X ) ) )
1211com12 32 . . . . . . . . 9  |-  ( -.  ( lastS  `  w )  =  ( w ` 
0 )  ->  (
( w `  0
)  =  X  -> 
( ( w ` 
0 )  =  X  /\  ( lastS  `  w
)  =/=  X ) ) )
13 pm2.21 120 . . . . . . . . 9  |-  ( -.  ( w `  0
)  =  X  -> 
( ( w ` 
0 )  =  X  ->  ( ( w `
 0 )  =  X  /\  ( lastS  `  w
)  =/=  X ) ) )
1412, 13jaoi 394 . . . . . . . 8  |-  ( ( -.  ( lastS  `  w
)  =  ( w `
 0 )  \/ 
-.  ( w ` 
0 )  =  X )  ->  ( (
w `  0 )  =  X  ->  ( ( w `  0 )  =  X  /\  ( lastS  `  w )  =/=  X
) ) )
155, 14sylbi 207 . . . . . . 7  |-  ( -.  ( ( lastS  `  w
)  =  ( w `
 0 )  /\  ( w `  0
)  =  X )  ->  ( ( w `
 0 )  =  X  ->  ( (
w `  0 )  =  X  /\  ( lastS  `  w )  =/=  X
) ) )
1615impcom 446 . . . . . 6  |-  ( ( ( w `  0
)  =  X  /\  -.  ( ( lastS  `  w
)  =  ( w `
 0 )  /\  ( w `  0
)  =  X ) )  ->  ( (
w `  0 )  =  X  /\  ( lastS  `  w )  =/=  X
) )
17 simpl 473 . . . . . . 7  |-  ( ( ( w `  0
)  =  X  /\  ( lastS  `  w )  =/= 
X )  ->  (
w `  0 )  =  X )
18 neeq2 2857 . . . . . . . . . . 11  |-  ( X  =  ( w ` 
0 )  ->  (
( lastS  `  w )  =/= 
X  <->  ( lastS  `  w )  =/=  ( w ` 
0 ) ) )
1918eqcoms 2630 . . . . . . . . . 10  |-  ( ( w `  0 )  =  X  ->  (
( lastS  `  w )  =/= 
X  <->  ( lastS  `  w )  =/=  ( w ` 
0 ) ) )
20 neneq 2800 . . . . . . . . . 10  |-  ( ( lastS  `  w )  =/=  (
w `  0 )  ->  -.  ( lastS  `  w
)  =  ( w `
 0 ) )
2119, 20syl6bi 243 . . . . . . . . 9  |-  ( ( w `  0 )  =  X  ->  (
( lastS  `  w )  =/= 
X  ->  -.  ( lastS  `  w )  =  ( w `  0 ) ) )
2221imp 445 . . . . . . . 8  |-  ( ( ( w `  0
)  =  X  /\  ( lastS  `  w )  =/= 
X )  ->  -.  ( lastS  `  w )  =  ( w `  0
) )
2322intnanrd 963 . . . . . . 7  |-  ( ( ( w `  0
)  =  X  /\  ( lastS  `  w )  =/= 
X )  ->  -.  ( ( lastS  `  w )  =  ( w ` 
0 )  /\  (
w `  0 )  =  X ) )
2417, 23jca 554 . . . . . 6  |-  ( ( ( w `  0
)  =  X  /\  ( lastS  `  w )  =/= 
X )  ->  (
( w `  0
)  =  X  /\  -.  ( ( lastS  `  w
)  =  ( w `
 0 )  /\  ( w `  0
)  =  X ) ) )
2516, 24impbii 199 . . . . 5  |-  ( ( ( w `  0
)  =  X  /\  -.  ( ( lastS  `  w
)  =  ( w `
 0 )  /\  ( w `  0
)  =  X ) )  <->  ( ( w `
 0 )  =  X  /\  ( lastS  `  w
)  =/=  X ) )
2625a1i 11 . . . 4  |-  ( w  e.  ( N WWalksN  G
)  ->  ( (
( w `  0
)  =  X  /\  -.  ( ( lastS  `  w
)  =  ( w `
 0 )  /\  ( w `  0
)  =  X ) )  <->  ( ( w `
 0 )  =  X  /\  ( lastS  `  w
)  =/=  X ) ) )
2726rabbiia 3185 . . 3  |-  { w  e.  ( N WWalksN  G )  |  ( ( w `
 0 )  =  X  /\  -.  (
( lastS  `  w )  =  ( w `  0
)  /\  ( w `  0 )  =  X ) ) }  =  { w  e.  ( N WWalksN  G )  |  ( ( w `
 0 )  =  X  /\  ( lastS  `  w
)  =/=  X ) }
283, 4, 273eqtrri 2649 . 2  |-  { w  e.  ( N WWalksN  G )  |  ( ( w `
 0 )  =  X  /\  ( lastS  `  w
)  =/=  X ) }  =  ( { w  e.  ( N WWalksN  G )  |  ( w `  0 )  =  X }  \  B )
291, 28eqtri 2644 1  |-  A  =  ( { w  e.  ( N WWalksN  G )  |  ( w ` 
0 )  =  X }  \  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916    \ cdif 3571   ` cfv 5888  (class class class)co 6650   0cc0 9936   lastS clsw 13292   WWalksN cwwlksn 26718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577
This theorem is referenced by:  clwwlknclwwlkdifnum  26874
  Copyright terms: Public domain W3C validator