| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difrab | Structured version Visualization version Unicode version | ||
| Description: Difference of two restricted class abstractions. (Contributed by NM, 23-Oct-2004.) |
| Ref | Expression |
|---|---|
| difrab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 2921 |
. . 3
| |
| 2 | df-rab 2921 |
. . 3
| |
| 3 | 1, 2 | difeq12i 3726 |
. 2
|
| 4 | df-rab 2921 |
. . 3
| |
| 5 | difab 3896 |
. . . 4
| |
| 6 | anass 681 |
. . . . . 6
| |
| 7 | simpr 477 |
. . . . . . . . 9
| |
| 8 | 7 | con3i 150 |
. . . . . . . 8
|
| 9 | 8 | anim2i 593 |
. . . . . . 7
|
| 10 | pm3.2 463 |
. . . . . . . . . 10
| |
| 11 | 10 | adantr 481 |
. . . . . . . . 9
|
| 12 | 11 | con3d 148 |
. . . . . . . 8
|
| 13 | 12 | imdistani 726 |
. . . . . . 7
|
| 14 | 9, 13 | impbii 199 |
. . . . . 6
|
| 15 | 6, 14 | bitr3i 266 |
. . . . 5
|
| 16 | 15 | abbii 2739 |
. . . 4
|
| 17 | 5, 16 | eqtr4i 2647 |
. . 3
|
| 18 | 4, 17 | eqtr4i 2647 |
. 2
|
| 19 | 3, 18 | eqtr4i 2647 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 |
| This theorem is referenced by: alephsuc3 9402 shftmbl 23306 musum 24917 clwwlknclwwlkdifs 26873 aciunf1 29463 poimirlem26 33435 poimirlem27 33436 |
| Copyright terms: Public domain | W3C validator |