MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  compleq Structured version   Visualization version   Unicode version

Theorem compleq 3752
Description: Two classes are equal if and only if their complements are equal. (Contributed by BJ, 19-Mar-2021.)
Assertion
Ref Expression
compleq  |-  ( A  =  B  <->  ( _V  \  A )  =  ( _V  \  B ) )

Proof of Theorem compleq
StepHypRef Expression
1 complss 3751 . . 3  |-  ( A 
C_  B  <->  ( _V  \  B )  C_  ( _V  \  A ) )
2 complss 3751 . . 3  |-  ( B 
C_  A  <->  ( _V  \  A )  C_  ( _V  \  B ) )
31, 2anbi12ci 734 . 2  |-  ( ( A  C_  B  /\  B  C_  A )  <->  ( ( _V  \  A )  C_  ( _V  \  B )  /\  ( _V  \  B )  C_  ( _V  \  A ) ) )
4 eqss 3618 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
5 eqss 3618 . 2  |-  ( ( _V  \  A )  =  ( _V  \  B )  <->  ( ( _V  \  A )  C_  ( _V  \  B )  /\  ( _V  \  B )  C_  ( _V  \  A ) ) )
63, 4, 53bitr4i 292 1  |-  ( A  =  B  <->  ( _V  \  A )  =  ( _V  \  B ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   _Vcvv 3200    \ cdif 3571    C_ wss 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator