Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  crefeq Structured version   Visualization version   Unicode version

Theorem crefeq 29912
Description: Equality theorem for the "every open cover has an A refinement" predicate. (Contributed by Thierry Arnoux, 7-Jan-2020.)
Assertion
Ref Expression
crefeq  |-  ( A  =  B  -> CovHasRef A  = CovHasRef B )

Proof of Theorem crefeq
Dummy variables  j 
y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ineq2 3808 . . . . . 6  |-  ( A  =  B  ->  ( ~P j  i^i  A )  =  ( ~P j  i^i  B ) )
21rexeqdv 3145 . . . . 5  |-  ( A  =  B  ->  ( E. z  e.  ( ~P j  i^i  A ) z Ref y  <->  E. z  e.  ( ~P j  i^i 
B ) z Ref y ) )
32imbi2d 330 . . . 4  |-  ( A  =  B  ->  (
( U. j  = 
U. y  ->  E. z  e.  ( ~P j  i^i 
A ) z Ref y )  <->  ( U. j  =  U. y  ->  E. z  e.  ( ~P j  i^i  B
) z Ref y
) ) )
43ralbidv 2986 . . 3  |-  ( A  =  B  ->  ( A. y  e.  ~P  j ( U. j  =  U. y  ->  E. z  e.  ( ~P j  i^i 
A ) z Ref y )  <->  A. y  e.  ~P  j ( U. j  =  U. y  ->  E. z  e.  ( ~P j  i^i  B
) z Ref y
) ) )
54rabbidv 3189 . 2  |-  ( A  =  B  ->  { j  e.  Top  |  A. y  e.  ~P  j
( U. j  = 
U. y  ->  E. z  e.  ( ~P j  i^i 
A ) z Ref y ) }  =  { j  e.  Top  | 
A. y  e.  ~P  j ( U. j  =  U. y  ->  E. z  e.  ( ~P j  i^i 
B ) z Ref y ) } )
6 df-cref 29910 . 2  |- CovHasRef A  =  { j  e.  Top  | 
A. y  e.  ~P  j ( U. j  =  U. y  ->  E. z  e.  ( ~P j  i^i 
A ) z Ref y ) }
7 df-cref 29910 . 2  |- CovHasRef B  =  { j  e.  Top  | 
A. y  e.  ~P  j ( U. j  =  U. y  ->  E. z  e.  ( ~P j  i^i 
B ) z Ref y ) }
85, 6, 73eqtr4g 2681 1  |-  ( A  =  B  -> CovHasRef A  = CovHasRef B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483   A.wral 2912   E.wrex 2913   {crab 2916    i^i cin 3573   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653   Topctop 20698   Refcref 21305  CovHasRefccref 29909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-in 3581  df-cref 29910
This theorem is referenced by:  ispcmp  29924
  Copyright terms: Public domain W3C validator