Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbeq2gVD Structured version   Visualization version   Unicode version

Theorem csbeq2gVD 39128
Description: Virtual deduction proof of csbeq2gOLD 38765. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbeq2gOLD 38765 is csbeq2gVD 39128 without virtual deductions and was automatically derived from csbeq2gVD 39128.
1::  |-  (. A  e.  V  ->.  A  e.  V ).
2:1:  |-  (. A  e.  V  ->.  ( A. x B  =  C  ->  [. A  /  x ].  B  =  C ) ).
3:1:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. B  =  C  <->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C ) ).
4:2,3:  |-  (. A  e.  V  ->.  ( A. x B  =  C  ->  [_ A  /  x  ]_ B  =  [_ A  /  x ]_ C ) ).
qed:4:  |-  ( A  e.  V  ->  ( A. x B  =  C  ->  [_ A  /  x ]_  B  =  [_ A  /  x ]_ C ) )
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbeq2gVD  |-  ( A  e.  V  ->  ( A. x  B  =  C  ->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C ) )

Proof of Theorem csbeq2gVD
StepHypRef Expression
1 idn1 38790 . . . 4  |-  (. A  e.  V  ->.  A  e.  V ).
2 spsbc 3448 . . . 4  |-  ( A  e.  V  ->  ( A. x  B  =  C  ->  [. A  /  x ]. B  =  C
) )
31, 2e1a 38852 . . 3  |-  (. A  e.  V  ->.  ( A. x  B  =  C  ->  [. A  /  x ]. B  =  C ) ).
4 sbceqg 3984 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C ) )
51, 4e1a 38852 . . 3  |-  (. A  e.  V  ->.  ( [. A  /  x ]. B  =  C  <->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C ) ).
6 imbi2 338 . . . 4  |-  ( (
[. A  /  x ]. B  =  C  <->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C )  -> 
( ( A. x  B  =  C  ->  [. A  /  x ]. B  =  C )  <->  ( A. x  B  =  C  ->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C
) ) )
76biimpcd 239 . . 3  |-  ( ( A. x  B  =  C  ->  [. A  /  x ]. B  =  C )  ->  ( ( [. A  /  x ]. B  =  C  <->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C )  -> 
( A. x  B  =  C  ->  [_ A  /  x ]_ B  = 
[_ A  /  x ]_ C ) ) )
83, 5, 7e11 38913 . 2  |-  (. A  e.  V  ->.  ( A. x  B  =  C  ->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C ) ).
98in1 38787 1  |-  ( A  e.  V  ->  ( A. x  B  =  C  ->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481    = wceq 1483    e. wcel 1990   [.wsbc 3435   [_csb 3533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-sbc 3436  df-csb 3534  df-vd1 38786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator