MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ac Structured version   Visualization version   Unicode version

Definition df-ac 8939
Description: The expression CHOICE will be used as a readable shorthand for any form of the axiom of choice; all concrete forms are long, cryptic, have dummy variables, or all three, making it useful to have a short name. Similar to the Axiom of Choice (first form) of [Enderton] p. 49.

There is a slight problem with taking the exact form of ax-ac 9281 as our definition, because the equivalence to more standard forms (dfac2 8953) requires the Axiom of Regularity, which we often try to avoid. Thus, we take the first of the "textbook forms" as the definition and derive the form of ax-ac 9281 itself as dfac0 8955. (Contributed by Mario Carneiro, 22-Feb-2015.)

Assertion
Ref Expression
df-ac  |-  (CHOICE  <->  A. x E. f ( f  C_  x  /\  f  Fn  dom  x ) )
Distinct variable group:    x, f

Detailed syntax breakdown of Definition df-ac
StepHypRef Expression
1 wac 8938 . 2  wff CHOICE
2 vf . . . . . . 7  setvar  f
32cv 1482 . . . . . 6  class  f
4 vx . . . . . . 7  setvar  x
54cv 1482 . . . . . 6  class  x
63, 5wss 3574 . . . . 5  wff  f  C_  x
75cdm 5114 . . . . . 6  class  dom  x
83, 7wfn 5883 . . . . 5  wff  f  Fn 
dom  x
96, 8wa 384 . . . 4  wff  ( f 
C_  x  /\  f  Fn  dom  x )
109, 2wex 1704 . . 3  wff  E. f
( f  C_  x  /\  f  Fn  dom  x )
1110, 4wal 1481 . 2  wff  A. x E. f ( f  C_  x  /\  f  Fn  dom  x )
121, 11wb 196 1  wff  (CHOICE  <->  A. x E. f ( f  C_  x  /\  f  Fn  dom  x ) )
Colors of variables: wff setvar class
This definition is referenced by:  dfac3  8944  ac7  9295
  Copyright terms: Public domain W3C validator