MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac3 Structured version   Visualization version   Unicode version

Theorem dfac3 8944
Description: Equivalence of two versions of the Axiom of Choice. The left-hand side is defined as the Axiom of Choice (first form) of [Enderton] p. 49. The right-hand side is the Axiom of Choice of [TakeutiZaring] p. 83. The proof does not depend on AC. (Contributed by NM, 24-Mar-2004.) (Revised by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
dfac3  |-  (CHOICE  <->  A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
Distinct variable group:    x, f, z

Proof of Theorem dfac3
Dummy variables  y  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ac 8939 . 2  |-  (CHOICE  <->  A. y E. f ( f  C_  y  /\  f  Fn  dom  y ) )
2 vex 3203 . . . . . . . 8  |-  x  e. 
_V
3 vuniex 6954 . . . . . . . 8  |-  U. x  e.  _V
42, 3xpex 6962 . . . . . . 7  |-  ( x  X.  U. x )  e.  _V
5 simpl 473 . . . . . . . . . 10  |-  ( ( w  e.  x  /\  v  e.  w )  ->  w  e.  x )
6 elunii 4441 . . . . . . . . . . 11  |-  ( ( v  e.  w  /\  w  e.  x )  ->  v  e.  U. x
)
76ancoms 469 . . . . . . . . . 10  |-  ( ( w  e.  x  /\  v  e.  w )  ->  v  e.  U. x
)
85, 7jca 554 . . . . . . . . 9  |-  ( ( w  e.  x  /\  v  e.  w )  ->  ( w  e.  x  /\  v  e.  U. x
) )
98ssopab2i 5003 . . . . . . . 8  |-  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) }  C_  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  U. x
) }
10 df-xp 5120 . . . . . . . 8  |-  ( x  X.  U. x )  =  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  U. x
) }
119, 10sseqtr4i 3638 . . . . . . 7  |-  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) }  C_  ( x  X.  U. x )
124, 11ssexi 4803 . . . . . 6  |-  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) }  e.  _V
13 sseq2 3627 . . . . . . . 8  |-  ( y  =  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) }  ->  ( f  C_  y 
<->  f  C_  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) } ) )
14 dmeq 5324 . . . . . . . . 9  |-  ( y  =  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) }  ->  dom  y  =  dom  { <. w ,  v
>.  |  ( w  e.  x  /\  v  e.  w ) } )
1514fneq2d 5982 . . . . . . . 8  |-  ( y  =  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) }  ->  ( f  Fn 
dom  y  <->  f  Fn  dom  { <. w ,  v
>.  |  ( w  e.  x  /\  v  e.  w ) } ) )
1613, 15anbi12d 747 . . . . . . 7  |-  ( y  =  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) }  ->  ( ( f 
C_  y  /\  f  Fn  dom  y )  <->  ( f  C_ 
{ <. w ,  v
>.  |  ( w  e.  x  /\  v  e.  w ) }  /\  f  Fn  dom  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) } ) ) )
1716exbidv 1850 . . . . . 6  |-  ( y  =  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) }  ->  ( E. f
( f  C_  y  /\  f  Fn  dom  y )  <->  E. f
( f  C_  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) }  /\  f  Fn  dom  {
<. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) } ) ) )
1812, 17spcv 3299 . . . . 5  |-  ( A. y E. f ( f 
C_  y  /\  f  Fn  dom  y )  ->  E. f ( f  C_  {
<. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) }  /\  f  Fn  dom  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) } ) )
19 fndm 5990 . . . . . . . . . . . . 13  |-  ( f  Fn  dom  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) }  ->  dom  f  =  dom  { <. w ,  v
>.  |  ( w  e.  x  /\  v  e.  w ) } )
20 eleq2 2690 . . . . . . . . . . . . . 14  |-  ( dom  f  =  dom  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) }  ->  ( z  e.  dom  f  <->  z  e.  dom  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) } ) )
21 dmopab 5335 . . . . . . . . . . . . . . . 16  |-  dom  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) }  =  { w  |  E. v ( w  e.  x  /\  v  e.  w ) }
2221eleq2i 2693 . . . . . . . . . . . . . . 15  |-  ( z  e.  dom  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) } 
<->  z  e.  { w  |  E. v ( w  e.  x  /\  v  e.  w ) } )
23 vex 3203 . . . . . . . . . . . . . . . 16  |-  z  e. 
_V
24 elequ1 1997 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  z  ->  (
w  e.  x  <->  z  e.  x ) )
25 eleq2 2690 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  z  ->  (
v  e.  w  <->  v  e.  z ) )
2624, 25anbi12d 747 . . . . . . . . . . . . . . . . 17  |-  ( w  =  z  ->  (
( w  e.  x  /\  v  e.  w
)  <->  ( z  e.  x  /\  v  e.  z ) ) )
2726exbidv 1850 . . . . . . . . . . . . . . . 16  |-  ( w  =  z  ->  ( E. v ( w  e.  x  /\  v  e.  w )  <->  E. v
( z  e.  x  /\  v  e.  z
) ) )
2823, 27elab 3350 . . . . . . . . . . . . . . 15  |-  ( z  e.  { w  |  E. v ( w  e.  x  /\  v  e.  w ) }  <->  E. v
( z  e.  x  /\  v  e.  z
) )
29 19.42v 1918 . . . . . . . . . . . . . . . 16  |-  ( E. v ( z  e.  x  /\  v  e.  z )  <->  ( z  e.  x  /\  E. v 
v  e.  z ) )
30 n0 3931 . . . . . . . . . . . . . . . . 17  |-  ( z  =/=  (/)  <->  E. v  v  e.  z )
3130anbi2i 730 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  x  /\  z  =/=  (/) )  <->  ( z  e.  x  /\  E. v 
v  e.  z ) )
3229, 31bitr4i 267 . . . . . . . . . . . . . . 15  |-  ( E. v ( z  e.  x  /\  v  e.  z )  <->  ( z  e.  x  /\  z  =/=  (/) ) )
3322, 28, 323bitrri 287 . . . . . . . . . . . . . 14  |-  ( ( z  e.  x  /\  z  =/=  (/) )  <->  z  e.  dom  { <. w ,  v
>.  |  ( w  e.  x  /\  v  e.  w ) } )
3420, 33syl6rbbr 279 . . . . . . . . . . . . 13  |-  ( dom  f  =  dom  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) }  ->  ( ( z  e.  x  /\  z  =/=  (/) )  <->  z  e.  dom  f ) )
3519, 34syl 17 . . . . . . . . . . . 12  |-  ( f  Fn  dom  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) }  ->  ( ( z  e.  x  /\  z  =/=  (/) )  <->  z  e.  dom  f ) )
3635adantl 482 . . . . . . . . . . 11  |-  ( ( f  C_  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) }  /\  f  Fn  dom  {
<. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) } )  ->  ( ( z  e.  x  /\  z  =/=  (/) )  <->  z  e.  dom  f ) )
37 fnfun 5988 . . . . . . . . . . . 12  |-  ( f  Fn  dom  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) }  ->  Fun  f )
38 funfvima3 6495 . . . . . . . . . . . . 13  |-  ( ( Fun  f  /\  f  C_ 
{ <. w ,  v
>.  |  ( w  e.  x  /\  v  e.  w ) } )  ->  ( z  e. 
dom  f  ->  (
f `  z )  e.  ( { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) } " { z } ) ) )
3938ancoms 469 . . . . . . . . . . . 12  |-  ( ( f  C_  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) }  /\  Fun  f )  ->  ( z  e. 
dom  f  ->  (
f `  z )  e.  ( { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) } " { z } ) ) )
4037, 39sylan2 491 . . . . . . . . . . 11  |-  ( ( f  C_  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) }  /\  f  Fn  dom  {
<. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) } )  ->  ( z  e. 
dom  f  ->  (
f `  z )  e.  ( { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) } " { z } ) ) )
4136, 40sylbid 230 . . . . . . . . . 10  |-  ( ( f  C_  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) }  /\  f  Fn  dom  {
<. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) } )  ->  ( ( z  e.  x  /\  z  =/=  (/) )  ->  (
f `  z )  e.  ( { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) } " { z } ) ) )
4241imp 445 . . . . . . . . 9  |-  ( ( ( f  C_  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) }  /\  f  Fn  dom  {
<. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) } )  /\  ( z  e.  x  /\  z  =/=  (/) ) )  ->  (
f `  z )  e.  ( { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) } " { z } ) )
43 ibar 525 . . . . . . . . . . . . 13  |-  ( z  e.  x  ->  (
u  e.  z  <->  ( z  e.  x  /\  u  e.  z ) ) )
4443abbi2dv 2742 . . . . . . . . . . . 12  |-  ( z  e.  x  ->  z  =  { u  |  ( z  e.  x  /\  u  e.  z ) } )
45 imasng 5487 . . . . . . . . . . . . . 14  |-  ( z  e.  _V  ->  ( { <. w ,  v
>.  |  ( w  e.  x  /\  v  e.  w ) } " { z } )  =  { u  |  z { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) } u } )
4623, 45ax-mp 5 . . . . . . . . . . . . 13  |-  ( {
<. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) } " { z } )  =  { u  |  z { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) } u }
47 vex 3203 . . . . . . . . . . . . . . 15  |-  u  e. 
_V
48 elequ1 1997 . . . . . . . . . . . . . . . 16  |-  ( v  =  u  ->  (
v  e.  z  <->  u  e.  z ) )
4948anbi2d 740 . . . . . . . . . . . . . . 15  |-  ( v  =  u  ->  (
( z  e.  x  /\  v  e.  z
)  <->  ( z  e.  x  /\  u  e.  z ) ) )
50 eqid 2622 . . . . . . . . . . . . . . 15  |-  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) }  =  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) }
5123, 47, 26, 49, 50brab 4998 . . . . . . . . . . . . . 14  |-  ( z { <. w ,  v
>.  |  ( w  e.  x  /\  v  e.  w ) } u  <->  ( z  e.  x  /\  u  e.  z )
)
5251abbii 2739 . . . . . . . . . . . . 13  |-  { u  |  z { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) } u }  =  { u  |  (
z  e.  x  /\  u  e.  z ) }
5346, 52eqtri 2644 . . . . . . . . . . . 12  |-  ( {
<. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) } " { z } )  =  { u  |  ( z  e.  x  /\  u  e.  z
) }
5444, 53syl6reqr 2675 . . . . . . . . . . 11  |-  ( z  e.  x  ->  ( { <. w ,  v
>.  |  ( w  e.  x  /\  v  e.  w ) } " { z } )  =  z )
5554eleq2d 2687 . . . . . . . . . 10  |-  ( z  e.  x  ->  (
( f `  z
)  e.  ( {
<. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) } " { z } )  <-> 
( f `  z
)  e.  z ) )
5655ad2antrl 764 . . . . . . . . 9  |-  ( ( ( f  C_  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) }  /\  f  Fn  dom  {
<. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) } )  /\  ( z  e.  x  /\  z  =/=  (/) ) )  ->  (
( f `  z
)  e.  ( {
<. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) } " { z } )  <-> 
( f `  z
)  e.  z ) )
5742, 56mpbid 222 . . . . . . . 8  |-  ( ( ( f  C_  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) }  /\  f  Fn  dom  {
<. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) } )  /\  ( z  e.  x  /\  z  =/=  (/) ) )  ->  (
f `  z )  e.  z )
5857exp32 631 . . . . . . 7  |-  ( ( f  C_  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) }  /\  f  Fn  dom  {
<. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) } )  ->  ( z  e.  x  ->  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) ) )
5958ralrimiv 2965 . . . . . 6  |-  ( ( f  C_  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) }  /\  f  Fn  dom  {
<. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) } )  ->  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )
6059eximi 1762 . . . . 5  |-  ( E. f ( f  C_  {
<. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) }  /\  f  Fn  dom  { <. w ,  v >.  |  ( w  e.  x  /\  v  e.  w ) } )  ->  E. f A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )
6118, 60syl 17 . . . 4  |-  ( A. y E. f ( f 
C_  y  /\  f  Fn  dom  y )  ->  E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
6261alrimiv 1855 . . 3  |-  ( A. y E. f ( f 
C_  y  /\  f  Fn  dom  y )  ->  A. x E. f A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z ) )
63 eqid 2622 . . . . 5  |-  ( w  e.  dom  y  |->  ( f `  { u  |  w y u }
) )  =  ( w  e.  dom  y  |->  ( f `  {
u  |  w y u } ) )
6463aceq3lem 8943 . . . 4  |-  ( A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  E. f
( f  C_  y  /\  f  Fn  dom  y ) )
6564alrimiv 1855 . . 3  |-  ( A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  A. y E. f ( f  C_  y  /\  f  Fn  dom  y ) )
6662, 65impbii 199 . 2  |-  ( A. y E. f ( f 
C_  y  /\  f  Fn  dom  y )  <->  A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
671, 66bitri 264 1  |-  (CHOICE  <->  A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   _Vcvv 3200    C_ wss 3574   (/)c0 3915   {csn 4177   U.cuni 4436   class class class wbr 4653   {copab 4712    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   "cima 5117   Fun wfun 5882    Fn wfn 5883   ` cfv 5888  CHOICEwac 8938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-ac 8939
This theorem is referenced by:  dfac4  8945  dfac5  8951  dfac2a  8952  dfac2  8953  dfac8  8957  dfac9  8958  ac4  9297  dfac11  37632
  Copyright terms: Public domain W3C validator